Hempel-Schaffner-Bielich/SFHo

EoS Submission Details

EoS name Hempel—Schaffner-Bielich/SFHo

category hadronic

submitted by Matthias Hempel affiliation Universität Basel

e-mail contact matthias.hempel(at)unibas.ch

sheet creation date July 10, 2013

Abstract

This is the zero electron faction EOS table with RMF interactions SFHo [1]. Contributions of neutrons, anti-neutrons, protons, and anti-protons are included, whereas the net abundance of protons is always zero. The details of the underlying EOS model at finite Y_e can be found in Ref. [2], where the TMA interactions were used. The manual from the web page

http://phys-merger.physik.unibas.ch/~hempel/eos.html gives further information about the table. Applications of HS EOS for various different RMF interactions in supernova simulations can be found in Refs. [1,3].

References to the original work

- 1. A.W. Steiner, M. Hempel, and T. Fischer (2012), arXiv:1207.2184.
- 2. M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837 (2010) 210.

Further References

3. M. Hempel, T. Fischer, J. Schaffner-Bielich, and M. Liebendörfer, Astrophys. J. **748** (2012) 70.

${\bf Nuclear\ Matter\ Properties}^1$

	Quantity	Unit	
$\overline{n_S}$	saturation density in symmetric matter	fm^{-3}	0.1583
E_0	binding energy per baryon at saturation	MeV	16.19
K	incompressibility	MeV	245.4
K'	skewness	MeV	-467.8
J	symmetry energy	MeV	31.57
L	symmetry energy slope parameter	MeV	47.10
K_{sym}	symmetry incompressibility	MeV	-205.4

Neutron Star Properties¹

	Quantity	Unit	
M_{max}	maximum mass	M_{sun}	2.06
$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	-
$R_{M_{max}}$	radius at maximum NS mass	km	10.32
$R_{1.4}$	radius at $1.4 M_{\rm sun} NS mass$	km	11.9

¹0-values indicate, that the corresponding data is not provided.

eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available. eos.thermo does <u>not</u> necessarily provide all possible data.

table dimension	2
table type	4
total number of grid points	24948

Range and density (#) of the grid parameters:

	Quantity	Unit	min	max	#	
Τ	Temperature	MeV	0.10000000E+00	0.15848932E + 03	81	
\mathbf{n}_b	Baryon Nr Density	${ m fm^{-3}}$	0.10000000E-11	$0.1905461E{+}01$	308	
Y_q	Charge Fraction		0.00000000E+00	0.00000000E+00	1	

T, $\mathbf{n}_b,$ and \mathbf{Y}_q are stored in eos.t, eos.nb, and eos.yq, respectively.

additional quantities in eos.thermo

none defined

Further Available Data Files

Files and quantities listed in the following are provided beyond CompOSE's core requirements as outlined in Sec.4.2. of the CompOSE manual.

eos.compo: available

$$\begin{array}{c|c} index & particle \\ 10 & n \\ & - end \ of \ table \ - \end{array}$$

The listed particle number fraction of neutrons is the net fraction, i.e., it is given by the difference between the neutron and anti-neutron number density. The net particle number fraction of protons is always zero, and therefore it is not listed. Further particle sets are not defined.

$\mathbf{eos.micro}: available$

index	quantity	particle
10041	Dirac effective mass divided by particle mass m_i^D/m_i	\mathbf{n}
11041	Dirac effective mass divided by particle mass m_i^D/m_i	p
	- end of table -	

Description of Phases

Fill this part briefly, in particular if several phases occur. In this latter case characterize the transition(s).

PHASE INDEX #3:

pure RMF, i.e., only nucleons