Hempel-Schaffner-Bielich/SFHx

EoS Submission Details

EoS name	Hempel–Schaffner-Bielich/SFHx
category	hadronic
submitted by	Matthias Hempel
affiliation	Universität Basel
e-mail contact	matthias.hempel(at)unibas.ch
sheet creation date	July 10, 2013

Abstract

This is the zero electron faction EOS table with RMF interactions SFHx [1]. Contributions of neutrons, anti-neutrons, protons, anti-protons, electrons, positrons, and photons are included, whereas the net abundances of electrons and protons are always zero. The details of the underlying EOS model at finite Y_e can be found in Ref. [2], where the TMA interactions were used. The manual from the web page

http://phys-merger.physik.unibas.ch/~hempel/eos.html gives further information about the table. Applications of HS EOS for various different RMF interactions in supernova simulations can be found in Refs. [1,3].

References to the original work

- 1. A.W. Steiner, M. Hempel, and T. Fischer (2012), arXiv:1207.2184.
- 2. M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837 (2010) 210.

Further References

 M. Hempel, T. Fischer, J. Schaffner-Bielich, and M. Liebendörfer, Astrophys. J. 748 (2012) 70.

Nuclear Matter Properties¹

	Quantity	Unit		
n_S	saturation density in symmetric matter	$\rm fm^{-3}$	0.1455	
E_0	binding energy per baryon at saturation	MeV	16.31	
K	incompressibility	MeV	281.6	
K'	skewness	MeV	-286.5	
J	symmetry energy	MeV	36.95	
L	symmetry energy slope parameter	MeV	110.99	
K_{sym}	symmetry incompressibility	MeV	33.7	

Neutron Star Properties¹

M_{max} maximum mass M_{sun} 2.21 $M_{DU,e}$ mass at DUrca threshold $(1/9)$ w/o $\mu^ M_{sun}$ 0.9 $R_{M_{max}}$ radius at maximum NS masskm12.53 $R_{1.4}$ radius at 1.4 M _{sun} NS masskm14.5		Quantity	Unit		
$R_{M_{max}}$ radius at maximum NS mass km 12.53	M _{max}	maximum mass	$M_{\rm sun}$	2.21	
	$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	0.9	
$R_{1.4}$ radius at 1.4 M _{sun} NS mass km 14.5	$R_{M_{max}}$	radius at maximum NS mass	km	12.53	
	$R_{1.4}$	radius at $1.4 M_{sun} NS mass$	km	14.5	

¹0-values indicate, that the corresponding data is not provided.

eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available. eos.thermo does <u>not</u> necessarily provide all possible data.

table dimension2table type4total number of grid points26406

Range and density (#) of the grid parameters:

	Quantity	Unit	\min	max	#
Т	Temperature	MeV	0.1000000E + 00	0.15848932E + 03	81
n_b	Baryon Nr Density	${\rm fm}^{-3}$	0.1000000E-11	0.1000000E + 02	326
\mathbf{Y}_q	Charge Fraction		0.00000000E+00	0.00000000E+00	1

T, n_b, and Y_q are stored in eos.t, eos.nb, and eos.yq, respectively.

additional quantities in eos.thermo

none defined

Further Available Data Files

Files and quantities listed in the following are provided beyond CompOSE's core requirements as outlined in Sec.4.2. of the CompOSE manual.

eos.compo : available

The listed particle number fraction of neutrons is the net fraction, i.e., it is given by the difference between the neutron and anti-neutron number density. The net particle number fractions of electrons and protons are always zero, and therefore they are not listed. Further particle sets are not defined.

eos.micro : available

index	quantity	particle
10041	Dirac effective mass divided by particle mass m_i^D/m_i	n
11041	Dirac effective mass divided by particle mass m_i^D/m_i	р
	- end of table -	
	•	

Description of Phases

Fill this part briefly, in particular if several phases occur. In this latter case characterize the transition(s).

PHASE INDEX #3: pure RMF, i.e., only nucleons