Lattimer-Swesty 220 with Λ -hyperons

EoS Submission Details

EoS name	Lattimer-Swesty 220 with Λ -hyperons
category	hadronic
submitted by	Micaela Oertel
affiliation	Laboratoire Univers et Théories, Meudon, France
e-mail contact	micaela.oertel@obspm.fr
sheet creation date	March 19, 2021

Abstract

This EoS is an extension of the EoS by Lattimer and Swesty [2], including the Λ -hyperon as additional particle [1,5]. The hyperon-nucleon and hyperon-hyperon interaction is taken from the model by Balberg and Gal [6], which is similar to the nucleon-nucleon interaction of Lattimer and Swesty [2], i.e. a momentum-independent Skyrme type nonrelativistic effective interaction. Photons and electrons/positrons are included as a free gas. Further details can be found in Refs. [1,3,5]. A first application in the supernova context is described in Ref. [4].

References to the original work

- F. Gulminelli, A. .R. Raduta, M. Oertel and J. Margueron, Phys. Rev. C 87 (2013) 05580
- 2. J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535 (1991) 331.

Further References

- 3. F. Gulminelli, A. .R. Raduta and M. Oertel, Phys. Rev. C 86 (2012) 025805.
- 4. B. Peres, M. Oertel and J. Novak, Phys. Rev. D 87 (2013) 043006.
- 5. M. Oertel, A. F. Fantina and J. Novak, Phys. Rev. C 85 (2012) 055806.
- 6. S. Balberg and A. Gal, Nucl. Phys. A 625 (1997) 435.

Nuclear Matter Properties¹

	Quantity	Unit		
n_S	saturation density in symmetric matter	${\rm fm}^{-3}$	0.155	
E_0	binding energy per baryon at saturation	MeV	16.0	
K	incompressibility	MeV	220	
K'	skewness	MeV	411	
J	symmetry energy	MeV	29.3	
L	symmetry energy slope parameter	MeV	74	
K_{sym}	symmetry incompressibility	MeV	-24	

Neutron Star Properties¹

	Quantity	Unit	
M_{max}	maximum mass	M_{sun}	1.91
$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	1.90
$R_{M_{max}}$	radius at maximum NS mass	km	9.28
$R_{1.4}$	radius at 1.4 M_{sun} NS mass	km	12.41

¹0-values indicate, that the corresponding data is not provided.

eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available. eos.thermo does <u>not</u> necessarily provide all possible data.

table dimension3table type1total number of grid points1363332

Range and density (#) of the grid parameters:

	Quantity	Unit	\min	max	#	
Т	Temperature	MeV	0.10471285E + 00	0.18197009E + 03	163	
\mathbf{n}_b	Baryon Nr Density	${\rm fm}^{-3}$	0.52233451 E-07	$0.11937766E{+}02$	164	
\mathbf{Y}_q	Charge Fraction		0.3000000E-01	0.5000000E + 00	51	

T, n_b, and Y_q are stored in eos.t, eos.nb, and eos.yq, respectively.

additional quantities in eos.thermo

Sound speed squared in units of c^2

Further Available Data Files

Files and quantities listed in the following are provided beyond CompOSE's core requirements as outlined in Sec.4.2. of the CompOSE manual.

 ${\bf eos. compo}: {\rm available}$

$$\begin{array}{ll} \mathrm{index} & \mathrm{particle} \\ 10 & \mathrm{n} \\ 11 & \mathrm{p} \\ 4002 & {}_{4}^{2}\mathrm{He} \\ 0 & \mathrm{e}^{-} \\ 100 & \Lambda \\ & - \mathrm{end} \mathrm{ of \ table} - \end{array}$$

further particle sets are defined. One set of quadruples for an average heavy nucleus, see Table 7.2 of the manual.

eos.micro : available

index	quantity	particle
10040	Landau effective mass divided by particle mass m_i^L/m_i	n
11040	Landau effective mass divided by particle mass m_i^L/m_i	р
10050	non-relativistic single-particle potential U_i [MeV]	n
11050	non-relativistic single-particle potential U_i [MeV]	р
100050	non-relativistic single-particle potential U_i [MeV]	Λ
	- end of table -	

Description of Phases

Fill this part briefly, in particular if several phases occur. In this latter case characterize the transition(s).

PHASE INDEX #5:

Phase coexistence region of the transition to hyperonic matter, see Ref. [1,3]. The coexistence region is treated by a Gibbs construction.