V-QCD(APR), combined APR-holographic EoS, intermediate version

EoS Submission Details

EoS name V-QCD(APR), combined APR-holographic EoS, intermediate version

category Hybrid

submitted by Matti Jarvinen & Niko Jokela

affiliation APCTP Pohang/Helsinki University

e-mail contact matti.jarvinen@apctp.org/niko.jokela@helsinki.fi

sheet creation date May 20, 2021

Abstract

These EoSs (soft, intermediate, and stiff variants) are mostly based on gauge/gravity duality and include both nuclear and quark matter phases. They were selected as representative examples from a larger family of EoSs constructed in [1]. EoSs of this type were first considered in [2]. They use the APR EoS [3] for nuclear matter at low densities, and the holographic V-QCD model for dense nuclear matter [4] as well as for quark matter [5]. To be precise, the EoSs are those considered in [1] with APR low density EoS, matching density of 1.6 times the saturation density, and V-QCD with potentials 5b, 7a, and 8b for the the soft, intermediate, and stiff variants, respectively.

References to the original work

- N. Jokela, M. Jarvinen, G. Nijs and J. Remes, Phys. Rev. D 103, 086004 (2021) https://doi.org/10.1103/PhysRevD.103.086004
- 2. C. Ecker, M. Jarvinen, G. Nijs and W. van der Schee, Phys. Rev. D 101, 103006 (2020) https://doi.org/10.1103/PhysRevD.101.103006
- 3. A. Akmal, V. R. Pandharipande and D. G. Ravenhall, Phys. Rev. C 58, 1804 (1998) http://dx.doi.org/10.1103/PhysRevC.58.1804
- 4. T. Ishii, M. Jarvinen and G. Nijs, JHEP 07, 003 (2019) https://doi.org/10.1007/JHEP07(2019)003
- N. Jokela, M. Jarvinen and J. Remes, JHEP 03, 041 (2019) https://doi.org/ 10.1007/JHEP03(2019)041

Nuclear Matter Properties¹

	Quantity	Unit		
$\overline{n_S}$	saturation density in symmetric matter	fm^{-3}	0.160	
E_0	binding energy per baryon at saturation	MeV	16.00	
K	incompressibility	MeV	266	
K'	skewness	MeV	0	
J	symmetry energy	MeV	32.59	
L	symmetry energy slope parameter	MeV	58.47	
K_{sym}	symmetry incompressibility	MeV	-102.63	

Neutron Star Properties¹

	Quantity	Unit	
M_{max}	maximum mass	M_{sun}	2.15
$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	0
$R_{M_{max}}$	radius at maximum NS mass	km	11.8
$R_{1.4}$	radius at $1.4 M_{sun} NS mass$	km	12.4
$ ilde{\Lambda}$	tidal deformability GW170817 at $q = M_1/M_2 = 0.8$		590

eos.thermo

eos. thermo and the three grid defining files are CompOSE standard data files and by definition available.

table dimension	1
table type	1
total number of grid points	651

Range and density (#) of the grid parameters:

	Quantity	Unit	min	max	#	
$\overline{\mathrm{T}}$	Temperature	MeV	0.0	0.0	1	
n_b	Baryon Nr Density	${\rm fm}^{-3}$	1.e-12	10	651	
Y_q	Charge Fraction		0	0	1	

T, $\mathbf{n}_b,$ and \mathbf{Y}_q are stored in eos.t, eos.nb, and eos.yq, respectively.

¹0-values indicate, that the corresponding data is not provided.