#### **Brussels-Montreal BSk26**

### **EoS Submission Details**

EoS name Brussels-Montreal BSk26

category nuclear

submitted by Anthea F. Fantina

affiliation Grand Accélérateur National d'Ions Lourds (GANIL)

e-mail contact anthea.fantina(at)ganil.fr

sheet creation date April 23, 2023

#### **Abstract**

This table corresponds to the zero temperature unified equation of state (EoS) for cold non-accreting neutron stars in beta equilibrium based on the Brussels-Montreal energy-density functional BSk26 [1]. Details on the EoS model can be found in Ref. [2] and the routines to construct an analytical fit of the EoS are also available on the Ioffe website [3]. The tidal deformability associated to this EoS model was calculated in Ref. [4].

The outer crust was calculated using the Hartree-Fock-Bogoliubov atomic mass table HFB-26 available on the BRUSLIB data base [5], except when experimental values were available, for which we used the 2016 Atomic Mass Evaluation [6], supplemented by the measurements of copper isotopes from Ref. [7]. The inner crust was computed using the 4th-order Extended Thomas-Fermi (ETF) method with proton shell and pairing corrections added perturbatively via the Strutinsky integral (SI); the nucleon distributions were parametrized using damped Fermi profiles and the Coulomb energy was calculated within the Wigner-Seitz (WS) approximation. Although the EoS was originally calculated ignoring nuclear pastas, their presence in neutron-star crust was later discussed in Refs. [8,9] and was shown to be marginal in the Extended Thomas-Fermi plus Strutinski Integral framework [9]. The core was assumed to be made up by an admixture of neutrons and protons neutralised by electrons and possibly by muons. <sup>1</sup>S<sub>0</sub> neutron and proton pairing gaps in neutron-star cores were calculated in Ref. [10].

### References to the original work

- S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88 (2013) 024308.
- J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C. Ducoin, A. K. Dutta, and S. Goriely, MNRAS 481 (2018) 2994; MNRAS 486 (2019) 768.
- 3. http://www.ioffe.ru/astro/NSG/BSk/
- 4. L. Perot, N. Chamel, and A. Sourie, Phys. Rev. C 100 (2019) 035801.

- 5. Y. Xu, S. Goriely, A. Jorissen, G. L. Chen, and M. Arnould, Astronomy & Astrophysics 549 (2013) A106.
- M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chinese Phys. C 41 (2017) 030003.
- 7. A. Welker, et al., Phys. Rev. Lett. 119 (2017) 192502.
- 8. J. M. Pearson, N. Chamel, and A. Y. Potekhin, Phys. Rev. C 101 (2020) 015802.
- 9. J. M. Pearson and N. Chamel, Phys. Rev. C 105 (2022) 015803.
- 10. V. Allard and N. Chamel, Universe 7 (2021) 470.

## Nuclear Matter Properties<sup>1</sup>

|                  | Quantity                                   | Unit               |        |
|------------------|--------------------------------------------|--------------------|--------|
| $\overline{n_S}$ | saturation density in symmetric matter     | $\mathrm{fm}^{-3}$ | 0.1589 |
| $E_0$            | binding energy per baryon at saturation    | MeV                | 16.064 |
| K                | incompressibility                          | MeV                | 240.8  |
| K'               | skewness                                   | MeV                | 282.9  |
| J                | symmetry energy                            | MeV                | 30.0   |
| L                | symmetry energy slope parameter            | MeV                | 37.5   |
| $K_{sym}$        | symmetry incompressibility                 | MeV                | -135.6 |
| $M_s^{\star}/M$  | isoscalar effective mass over nucleon mass | dimensionless      | 0.8    |
| $M_v^{\star}/M$  | isovector effective mass over nucleon mass | dimensionless      | 0.65   |

# Neutron Star Properties<sup>1</sup>

|                      | Quantity                                                      | $\operatorname{Unit}$ |         |
|----------------------|---------------------------------------------------------------|-----------------------|---------|
| $\overline{M_{max}}$ | maximum mass                                                  | $M_{sun}$             | 2.17    |
| $M_{DU,e}$           | mass at DUrca threshold (1/9) w/o $\mu^-$                     | $M_{\mathrm{sun}}$    | (2.115) |
| $R_{M_{max}}$        | radius at maximum NS mass                                     | $\mathrm{km}$         | 10.20   |
| $R_{1.4}$            | radius at $1.4 M_{\rm sun} NS $ mass                          | $\mathrm{km}$         | 11.77   |
| $	ilde{\Lambda}$     | tidal deformability for GW170817 at a mass ratio of $q = 0.8$ |                       | 379.3   |
| $n_{caus}$           | causality limit                                               | $\rm fm^{-3}$         | 0.982   |

The value of  $M_{DU,e}$  is enclosed in brackets to indicate that the density at which DUrca occurs corresponds to a spherically symmetric configuration belonging to the unstable branch. Thus, the DUrca processes cannot occur in stable neutron stars described by the BSk26 functional. The value of the  $\tilde{\Lambda}$  parameter has been determined for the following neutron-star masses:  $M_1 = 1.51~M_{\odot}$  and  $M_2 = 1.24~M_{\odot}$ , yielding a chirp mass  $\mathcal{M} = 1.188~M_{\odot}$  and a mass ratio q = 0.8.

#### eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available.

| table dimension             | 1   |
|-----------------------------|-----|
| table type                  | 1   |
| total number of grid points | 461 |

<sup>&</sup>lt;sup>1</sup>0-values indicate, that the corresponding data is not provided.

Range and density (#) of the grid parameters:

|       | Quantity          | $\operatorname{Unit}$ | $\min$     | max    | #   |  |
|-------|-------------------|-----------------------|------------|--------|-----|--|
| Т     | Temperature       | MeV                   | 0          | 0      | 1   |  |
| $n_b$ | Baryon Nr Density | $\mathrm{fm}^{-3}$    | 4.6796E-10 | 1.4921 | 461 |  |
| $Y_q$ | Charge Fraction   |                       | 0          | 0      | 1   |  |

T,  $\mathbf{n}_b$ , and  $\mathbf{Y}_q$  are stored in eos.t, eos.nb, and eos.yq, respectively.

## **Further Available Data Files**

Files and quantities listed in the following are provided beyond CompOSE's core requirements as outlined in Sec.4.2. of the CompOSE manual.

eos.compo: available

$$\begin{array}{c|c} \operatorname{index} & \operatorname{particle} \\ 0 & \operatorname{e^-} \\ 1 & \mu^- \\ 10 & \operatorname{n} \\ 11 & \operatorname{p} \\ -\operatorname{end} \operatorname{of table} - \end{array}$$

## Description of phases

Phase index # 1: inhomogeneous matter in the outer crust (ions and electrons)

Phase index # 2 : inhomogeneous matter in the inner crust (ions, electrons, and free nucleons)

Phase index # 0 : homogeneous matter in the core (neutrons, protons, electrons, muons)

eos.micro: available

| index  | quantity                                                   | particle     |
|--------|------------------------------------------------------------|--------------|
| 10040  | Landau effective mass divided by particle mass $m_i^L/m_i$ | n            |
| 11040  | Landau effective mass divided by particle mass $m_i^L/m_i$ | p            |
| 10050  | single-particle potential $U_i$                            | n            |
| 11051  | single-particle potential $U_i$                            | p            |
| 700060 | pairing gap in the $nn(^1S_0)$ channel                     | $\mathbf{n}$ |
| 702060 | pairing gap in the $pp(^1S_0)$ channel                     | p            |
|        | - end of table -                                           |              |

The quantities in eos.micro are only available for the core.

 $\mathbf{eos.mr}:$  available