SFHo EoS with hyperons added

EoS Submission Details

EoS name	SFHo EoS with hyperons added
category	hadronic
submitted by	Micaela Oertel
affiliation	LUTH, Observatoire de Paris/CNRS/PSL Research University
e-mail contact	micaela.oertel@obspm.fr
sheet creation date	October 22, 2020

Abstract

This is the SFHoY EOS table [1] which is based on the statistical model with excluded volume and interactions of Hempel and Schaffner-Bielich (HS) [2] with RMF interactions SFHo [3] ${ }^{1}$, where the entire baryon octet has been considered. For the masses of nuclei, FRDM [4] was used. Contributions of electrons, positrons and photons are included.

References to the original work

1. M. Fortin, M. Oertel, C. Providência, arxiv.org:1711.09427
2. M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837 (2010) 210.
3. A.W. Steiner, M. Hempel, and T. Fischer, Astrophys.J. 774 (2013) 17.
4. P. Möller, J.R. Nix, and K.-L. Kratz, Atomic Data and Nuclear Data Tables 66 (1997) 131.
[^0]
Updated parameter values for the SFHo interaction

Please refer to Ref. [3] for the notations.

Quantity	Unit	
c_{σ}	fm	3.1791606374
c_{ω}	fm	2.2752188529
c_{ρ}	fm	2.4062374629
b		$7.3536466626 \times 10^{-3}$
c		$-3.8202821956 \times 10^{-3}$
ζ		$-1.6155896062 \times 10^{-3}$
ξ		$4.1286242877 \times 10^{-3}$
a_{1}	fm^{-1}	$-1.9308602647 \times 10^{-1}$
a_{2}		$5.6150318121 \times 10^{-1}$
a_{3}	fm^{2}	$2.8617603774 \times 10^{-1}$
a_{4}	fm^{2}	2.7717729776
a_{5}	fm^{3}	1.2307286924
a_{6}	fm^{4}	$6.1480060734 \times 10^{-1}$
b_{1}		5.5118461115
b_{2}	fm^{2}	-1.8007283681
b_{3}	fm^{4}	$4.2610479708 \times 10^{2}$
m_{σ}	fm^{-1}	2.3689528914
m_{ω}	fm^{-1}	3.9655047020
m_{ρ}	fm^{-1}	3.8666788766

Nuclear Matter Properties ${ }^{2}$

	Quantity	Unit	
n_{S}	saturation density in symmetric matter	fm^{-3}	0.1583
E_{0}	binding energy per baryon at saturation	MeV	16.19
K	incompressibility	MeV	245.4
K^{\prime}	skewness	MeV	-467.8
J	symmetry energy	MeV	31.57
L	symmetry energy slope parameter	MeV	47.10
$K_{\text {sym }}$	symmetry incompressibility	MeV	-205.4

Neutron Star Properties ${ }^{2}$

eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available. eos.thermo does not necessarily provide all possible data.

[^1]| | Quantity | Unit | |
| :--- | :--- | :--- | :---: |
| $M_{\max }$ | maximum mass | $\mathrm{M}_{\text {sun }}$ | 1.99 |
| $M_{D U, e}$ | mass at DUrca threshold $(1 / 9) \mathrm{w} / \mathrm{o} \mu^{-}$ | $\mathrm{M}_{\text {sun }}$ | 0 |
| $R_{M_{\max }}$ | radius at maximum NS mass | km | 10.3 |
| $R_{1.4}$ | radius at $1.4 \mathrm{M}_{\text {sun }}$ NS mass | km | 11.9 |

table dimension 3
table type 1
total number of grid points 1496880

Range and density (\#) of the grid parameters:

Quantity		Unit	\min	\max	$\#$
T	Temperature	MeV	$0.1 \mathrm{E}+00$	$0.15848932 \mathrm{E}+03$	81
n_{b}	Baryon Nr Density	fm^{-3}	$0.1 \mathrm{E}-11$	$0.19054607 \mathrm{E}+01$	308
Y_{q}	Charge Fraction		$0.10000000 \mathrm{E}-01$	$0.60000000 \mathrm{E}+00$	60

$\mathrm{T}, \mathrm{n}_{b}$, and Y_{q} are stored in eos.t, eos.nb, and eos.yq, respectively.

Further Available Data Files

Files and quantities listed in the following are provided beyond CompOSE's core requirements as outlined in Sec.4.2. of the CompOSE manual.
eos.compo : available

index	particle
0	e^{-}
10	n
11	p
100	Λ
110	Σ^{-}
111	Σ^{0}
112	Σ^{+}
120	Ξ^{-}
121	Ξ^{0}
4002	${ }_{4} \mathrm{He}$
3002	${ }_{2}^{2} \mathrm{He}$
3001	${ }_{3} \mathrm{H} \mathrm{H}$
2001	$\frac{1}{2} \mathrm{H}$
	- end of table -

The listed particle number fractions are net fractions, i.e., they are given by the difference between the correspoding particle and anti-particle fractions. Further particle sets are defined.
index description
999 Average fraction, mass and proton number for all nuclei not listed above

- end of table -
eos.micro : available
index quantity particle
10041 Dirac effective mass divided by particle mass $m_{i}^{D} / m_{i} \quad \mathrm{n}$
11041 Dirac effective mass divided by particle mass $m_{i}^{D} / m_{i} \quad \mathrm{p}$
100041 Dirac effective mass divided by particle mass $m_{i}^{D} / m_{i} \quad \Lambda$
110041 Dirac effective mass divided by particle mass $m_{i}^{D} / m_{i} \quad \Sigma^{-}$
111041 Dirac effective mass divided by particle mass $m_{i}^{D} / m_{i} \quad \Sigma^{0}$
112041 Dirac effective mass divided by particle mass $m_{i}^{D} / m_{i} \quad \Sigma^{+}$
120041 Dirac effective mass divided by particle mass $m_{i}^{D} / m_{i} \Xi^{-}$
121041 Dirac effective mass divided by particle mass $m_{i}^{D} / m_{i} \quad \Xi^{0}$
10051 relativistic vector self-energy V_{i} n
11051 relativistic vector self-energy V_{i} p
- continued on next page -

index	quantity	particle
100051	relativistic vector self-energy V_{i}	Λ
110051	relativistic vector self-energy V_{i}	Σ^{-}
111051	relativistic vector self-energy V_{i}	Σ^{0}
112051	relativistic vector self-energy V_{i}	Σ^{+}
120051	relativistic vector self-energy V_{i}	Ξ^{-}
121051	relativistic vector self-energy V_{i}	Ξ^{0}

[^0]: ${ }^{1}$ Updated parameter values have been used for the calculation of the tables communicated by M. Hempel, see table below, to ensure a smooth transition from the purely nucleonic part to the hyperonic part.

[^1]: ${ }^{2} 0$-values indicate, that the corresponding data is not provided.

