EoS Submission Details

EoS name	SFHo EoS with hyperons added
category	hadronic
submitted by	Micaela Oertel
affiliation	LUTH, Observatoire de Paris/CNRS/PSL Research University
e-mail contact	micaela.oertel@obspm.fr
sheet creation date	October 22, 2020

Abstract

This is the SFHoY EOS table [1] which is based on the statistical model with excluded volume and interactions of Hempel and Schaffner-Bielich (HS) [2] with RMF interactions SFHo [3]¹, where the entire baryon octet has been considered. For the masses of nuclei, FRDM [4] was used. Contributions of electrons, positrons and photons are included.

References to the original work

- 1. M. Fortin, M. Oertel, C. Providência, arxiv.org:1711.09427
- 2. M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837 (2010) 210.
- 3. A.W. Steiner, M. Hempel, and T. Fischer, Astrophys.J. 774 (2013) 17.
- P. Möller, J.R. Nix, and K.-L. Kratz, Atomic Data and Nuclear Data Tables 66 (1997) 131.

¹Updated parameter values have been used for the calculation of the tables communicated by M. Hempel, see table below, to ensure a smooth transition from the purely nucleonic part to the hyperonic part.

Updated parameter values for the SFHo interaction

Please refer to Ref. [3] for the notations.

Quantity	Unit	
c_{σ}	fm	3.1791606374
c_{ω}	fm	2.2752188529
$c_{ ho}$	fm	2.4062374629
b		$7.3536466626 \times 10^{-3}$
c		$-3.8202821956 \times 10^{-3}$
ζ		$-1.6155896062 \times 10^{-3}$
ξ		$4.1286242877 \times 10^{-3}$
a_1	${\rm fm}^{-1}$	$-1.9308602647 \times 10^{-1}$
a_2		$5.6150318121 \times 10^{-1}$
a_3	fm	$2.8617603774 \times 10^{-1}$
a_4	fm^2	2.7717729776
a_5	fm^3	1.2307286924
a_6	fm^4	$6.1480060734 \times 10^{-1}$
b_1		5.5118461115
b_2	${\rm fm}^2$	-1.8007283681
b_3	${\rm fm}^4$	4.2610479708×10^2
m_{σ}	${\rm fm}^{-1}$	2.3689528914
m_{ω}	fm^{-1}	3.9655047020
$m_{ ho}$	fm^{-1}	3.8666788766
-		

Nuclear Matter Properties²

	Quantity	Unit	
n_S	saturation density in symmetric matter	fm^{-3}	0.1583
E_0	binding energy per baryon at saturation	MeV	16.19
K	incompressibility	MeV	245.4
K'	skewness	MeV	-467.8
J	symmetry energy	MeV	31.57
L	symmetry energy slope parameter	MeV	47.10
K_{sym}	symmetry incompressibility	MeV	-205.4

Neutron Star Properties²

eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available. eos.thermo does <u>not</u> necessarily provide all possible data.

 $^{^{2}\}mathrm{0}\text{-values}$ indicate, that the corresponding data is not provided.

	Quantity	Unit	
M _{max}	maximum mass	M_{sun}	1.99
$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	0
$R_{M_{max}}$	radius at maximum NS mass	km	10.3
$R_{1.4}$	radius at $1.4 M_{sun} NS$ mass	km	11.9

table dimension3table type1total number of grid points1496880

Range and density (#) of the grid parameters:

	Quantity	Unit	min	max	#
Т	Temperature	MeV	$0.1E{+}00$	$0.15848932E{+}03$	81
n_b	Baryon Nr Density	${\rm fm}^{-3}$	0.1E-11	$0.19054607\mathrm{E}{+}01$	308
\mathbf{Y}_q	Charge Fraction		0.1000000E-01	0.6000000E + 00	60

T, $\mathbf{n}_b,$ and \mathbf{Y}_q are stored in eos.t, eos.nb, and eos.yq, respectively.

Further Available Data Files

Files and quantities listed in the following are provided beyond CompOSE's core requirements as outlined in Sec.4.2. of the CompOSE manual.

eos.compo : available

index	particle
0	e ⁻
10	n
11	р
100	Λ
110	Σ^{-}
111	Σ^0
112	Σ^+
120	Ξ^{-}
121	Ξ^0
4002	2_4 He
3002	2_3 He
3001	${}^{1}_{3}\mathrm{H}$
2001	${ m }_{2}^{ m I}{ m H}$
	- end of table -

The listed particle number fractions are net fractions, i.e., they are given by the difference between the correspoding particle and anti-particle fractions. Further particle sets are defined.

- index description
- 999 Average fraction, mass and proton number for all nuclei not listed above - end of table -

eos.micro : available

index	quantity	particle
10041	Dirac effective mass divided by particle mass m_i^D/m_i	n
11041	Dirac effective mass divided by particle mass m_i^D/m_i	р
100041	Dirac effective mass divided by particle mass m_i^D/m_i	Λ
110041	Dirac effective mass divided by particle mass m_i^D/m_i	Σ^{-}
111041	Dirac effective mass divided by particle mass m_i^D/m_i	Σ^0
112041	Dirac effective mass divided by particle mass m_i^D/m_i	Σ^+
120041	Dirac effective mass divided by particle mass m_i^D/m_i	Ξ^-
121041	Dirac effective mass divided by particle mass m_i^D/m_i	Ξ^0
10051	relativistic vector self-energy V_i	n
11051	relativistic vector self-energy V_i	р
	- continued on next page -	

index	quantity	particle
100051	relativistic vector self-energy V_i	Λ
110051	relativistic vector self-energy V_i	Σ^{-}
111051	relativistic vector self-energy V_i	Σ^0
112051	relativistic vector self-energy V_i	Σ^+
120051	relativistic vector self-energy V_i	Ξ^{-}
121051	relativistic vector self-energy V_i	Ξ^0
	- end of table -	