Cold Neutron Star EoS

Models with hyperons and Delta-resonances

hybrid (quark-hadron) model

models with hyperons

Models with kaon condensate

nucleonic models

Cold Matter EoS

Models with hyperons and Delta-resonances

hybrid (quark-hadron) model

models with hyperons

Models with kaon condensate

nucleonic models

Neutron Matter EoS

Models with hyperons and Delta-resonances

hybrid (quark-hadron) model

models with hyperons

Models with kaon condensate

nucleonic models

General Purpose EoS

Models with hyperons and Delta-resonances

hybrid (quark-hadron) model

models with hyperons

Models with kaon condensate

nucleonic models

Neutron star crust EoS

Models with hyperons and Delta-resonances

hybrid (quark-hadron) model

models with hyperons

Models with kaon condensate

nucleonic models

ID | Authors | Ref | Year | Title | Journal | |
---|---|---|---|---|---|---|

46 | Y. Sugahara, H. Toki | STNP_1994 | 1994 | Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms | Nucl. Phys. A 579, 557 | Eos |

38 | P.-G. Reinhard et al. | RPRC_1999 | 1999 | Shape coexistence and the effective nucleon-nucleon interaction | Phys. Rev. C 60, 014316 | Eos |

37 | P.-G. Reinhard and H. Flocard | RFNP_1995 | 1995 | Nuclear effective forces and isotope shifts | Nucl. Phys. A 584, 467 | Eos |

23 | H. Toki, D. Hirata, Y. Sugahara, K. Sumiyoshi, and I. Tanihata | THSSN_1995 | 1995 | Relativistic many body approach for unstable nuclei and supernova | Nucl. Phys. A 588, 357 | Eos |

22 | H. S. Köhler | KNPA_1976 | 1976 | Skyrme force and the mass formula | Nucl. Phys. A 258, 301 | Eos |

31 | M. Hempel and J. Schaffner-Bielich | HSNP_2010 | 2010 | Statistical Model for a Complete Supernova Equation of State | Nucl. Phys. A 837, 210 | Eos |

36 | P. Danielewicz et J. Lee | DLNP_2009 | 2009 | Symmetry Energy I: Semi-Infinite Matter | Nucl. Phys. A818, 36 | Eos |

15 | F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, and G. Shen | FHPSP_2010 | 2010 | Relativistic effective interaction for nuclei, giant resonances, and neutron stars | Phys. Rev. C 82, 055803 | Eos |

45 | X. Roca-Maza and J. Piekarewicz | RPPR_2008 | 2008 | Impact of the symmetry energy on the outer crust of nonaccreting neutron stars | Phys. Rev. C 78, 025807 | Eos |

44 | T. Gaitanos et al. | GNPA_2004 | 2004 | On the Lorentz structure of the symmetry energy | Nucl. Phys. A732, 24 | Eos |

42 | S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H.H. Wolter | TRKBP_2010 | 2010 | Composition and thermodynamics of nuclear matter with light clusters | Phys. Rev. C 81, 015803 | Eos |

41 | S. Banik, M. Hempel, and D. Bandyopadhyay | BHB_2014 | 2014 | New Hyperon Equations of State for Supernovae and Neutron Stars in Density-dependent Hadron Field Theory | Astrophys.J.Suppl. 214, 22 | Eos |

40 | S. Balberg and A. Gal | BGNP_1997 | 1997 | An effective equation of state for dense matter with strangeness | Nucl. Phys. A 625, 435 | Eos |

39 | P. Möller, J.R. Nix, and K.-L. Kratz | MNKA_1997 | 1997 | NUCLEAR PROPERTIES FOR ASTROPHYSICAL AND RADIOACTIVE-ION-BEAM APPLICATIONS | Atomic Data and Nuclear Data Tables 66, 131 | Eos |

35 | N. K. Glendenning and S. A. Moszkowski | GMPR_1991 | 1991 | Reconciliation of neutron star masses and binding of the lambda in hypernuclei | Phys. Rev. Lett. 67, 2414 | Eos |

34 | M. Oertel, C. Providencia, F. Gulminelli, A. Raduta | OPGR_2015 | 2015 | Hyperons in neutron star matter within relativistic mean-field models | J. Phys. G 42, 075202 | Eos |

32 | M. Hempel, T. Fischer, J. Schaffner-Bielich, and M. Liebendörfer | HFSLA_2012 | 2012 | New Equations of State in Simulations of Core-Collapse Supernovae | Astrophys. J. 748, 70 | Eos |

30 | L. Geng, H. Toki, and J. Meng | GTMP_2005 | 2005 | Masses, deformations and charge radii: Nuclear ground-state properties in the relativistic mean field model | Prog. Theor. Phys. 113, 785 | Eos |

27 | J. M. Lattimer and F. D. Swesty | LSNP_1991 | 1991 | A Generalized equation of state for hot, dense matter | Nucl. Phys. A 535, 331 | Eos |

26 | J. Friedrich and P.-G. Reinhard | FRPR_1986 | 1986 | Skyrme-force parametrization: Least-squares fit to nuclear ground-state properties | Phys. Rev. C 33, 335 | Eos |

21 | H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi | STOSP_1998 | 1998 | Relativistic equation of state of nuclear matter for supernova explosion | Prog. Theor. Phys. 100, 1013 | Eos |

19 | H. Shen, F. Yang, H. Toki | SYTP_2006 | 2006 | Double-Lambda hypernuclei in the relativistic mean-field theory | Prog. Theor. Phys. 115, 325 | Eos |

17 | G.A. Lalazissis, S. Raman, and P. Ring | LRRA_1999 | 1999 | Ground-State Properties of Even-Even Nuclei in the Relativistic Mean-Field Theory | Atomic Data and Nuclear Data Tables 71, 1 | Eos |

13 | F. Gulminelli, A. .R. Raduta and M. Oertel | GROP_2012 | 2012 | Phase transition towards strange matter | Phys. Rev. C 86 , 025805 | Eos |

11 | F. Grill, H. Pais, C. Providencia, I. Vidana and S. S. Avancini | GPPVP_2014 | 2014 | Equation of state and thickness of the inner crust of neutron stars | Phys. Rev. C 90, 045803 | Eos |

9 | E. Chabanat | C_1995 | 1995 | Interactions effectives pour des conditions extrêmes d'isospin (in french) | Ph.D. thesis, University Claude Bernard Lyon-1, Lyon, France | Eos |

5 | B. K. Agrawal, S. Shlomo and V. Kim Au | ASKP_2003 | 2003 | Nuclear matter incompressibility coefficient in relativistic and nonrelativistic microscopic models | Phys. Rev. C 68 , 031304 | Eos |

2 | A.W. Steiner, M. Hempel, and T. Fischer | SHF_2013 | 2013 | Core-collapse supernova equations of state based on neutron star observations | Astrophys.J. 774,17 | Eos |

1 | A. Akmal, V. R. Pandharipande and D. G. Ravenhall | APRP_1998 | 1998 | The Equation of state of nucleon matter and neutron star structure | Phys. Rev. C 58, 1804 | Eos |

6 | B. Peres, M. Oertel and J. Novak | PONP_2013 | 2013 | Influence of pions and hyperons on stellar black hole formation | Phys. Rev. D 87, 043006 | Eos |

29 | L. Bennour et al. | BPRC_1989 | 1989 | Charge distributions of Pb-208, Pb-206, and Tl-205 and the mean-field approximation | Phys. Rev. C 40 2834 | Eos |

28 | K. Sumiyoshi, C. Ishizuka, A. Ohnishi, S. Yamada, H. Suzuki | SIOYA_2009 | 2009 | Emergence of hyperons in failed supernovae: trigger of the black hole formation | Astrophys.J. 690 L43 | Eos |

25 | I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich, F.-K. Thielemann, M. Liebendörfer | SFHPJ_2010 | 2010 | Strange quark matter in explosive astrophysical systems | Journ. of Phys. G 37, 094064 | Eos |

24 | I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich, A. Mezzacappa, F.-K. Thielemann, M. Liebendörfer | SFHPP_2009 | 2009 | Signals of the QCD phase transition in core-collapse supernovae | Phys. Rev. Lett. 102, 081101 | Eos |

20 | H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi | STOSN_1998 | 1998 | Relativistic equation of state of nuclear matter for supernova and neutron star | Nucl. Phys. A 637, 435 | Eos |

18 | G. Baym, C. Pethick and P. Sutherland | BPSA_1971 | 1971 | The Ground state of matter at high densities: Equation of state and stellar models | Astrophys. J. 170, 299 | Eos |

16 | G.A. Lalazissis, J. König, and P. Ring | LKRP_1997 | 1997 | A New parametrization for the Lagrangian density of relativistic mean field theory | Phys. Rev. C 55, 540 | Eos |

14 | F. Gulminelli, A. .R. Raduta, M. Oertel and J. Margueron | GROMP_2013 | 2013 | Strangeness-driven phase transition in (proto-)neutron star matter | Phys. Rev. C 87, 05580 | Eos |

12 | F. Gulminelli and Ad. R. Raduta | GR_2015 | 2015 | Unified treatment of subsaturation stellar matter at zero and finite temperature | Phys. Rev. C 92, 055803 | Eos |

10 | F. Douchin, P. Haensel | DHA_2001 | 2001 | A unified equation of state of dense matter and neutron star structure | Astronomy and Astrophysics 380, 151 | Eos |

8 | E. Chabanat et al. | CNPA_1997 | 1997 | A Skyrme parametrization from subnuclear to neutron star densities | Nucl. Phys. A 627, 710 | Eos |

7 | C. Ishizuka, A. Ohnishi, K. Tsubakihara, K. Sumiyoshi, S. Yamada | IOTSJ_2008 | 2008 | Tables of Hyperonic Matter Equation of State for Core-Collapse Supernovae | Journ. of Phys. G 35 085201 | Eos |

4 | B. K. Agrawal, S. Shlomo and V. Kim Au | ASKP_2005 | 2005 | Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach | Phys. Rev. C 72 , 014310 | Eos |

3 | B.G. Todd-Rutel and J. Piekarewicz | TPPR_2005 | 2005 | Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter | Phys. Rev. Lett. 95 , 122501 | Eos |

43 | T. Fischer, I. Sagert, G. Pagliara, M. Hempel, J. Scahaffner-Bielich, T. Rauscher, F.-K. Thielemann, R. Kappeli, G. Martinez-Pinedo, M. Liebendörfer | FSPHA_2011 | 2011 | Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase | ApJ Suppl. 194, 39 | Eos |

48 | G. Shen, C.J. Horowitz, S. Teige | SHT_2011 | 2011 | A New Equation of State for Astrophysical Simulations | Phys.Rev. C83, 035802 | Eos |

47 | G. Shen, C.J. Horowitz, E. O'Connor | SHO_2011 | 2011 | A Second Relativistic Mean Field and Virial Equation of State for Astrophysical Simulations | Phys.Rev. C83, 065808 | Eos |

33 | M. Oertel, A. F. Fantina and J. Novak | OFNP_2012 | 2012 | An extended equation of state for core-collapse simulations | Phys. Rev. C 85, 055806 | Eos |

60 | H. Shen, H. Toki, K. Oyamatsu , K. Sumiyoshi | STOS_2011 | 2011 | Relativistic Equation of State for Core-Collapse Supernova Simulations | Astrophys.J.Suppl. 197, 20 | Eos |

51 | H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki and M. Takano | TNTYST_17 | 2017 | Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces | Nucl. Phys. A 961, 78 | Eos |

52 | S. Furusawa, H. Togashi, H. Nagakura, K. Sumiyoshi, S. Yamada, H. Suzuki & M. Takano | FTNS_2017 | 2017 | A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble | J. Phys. G 44,9 | Eos |

53 | Shun Furusawa, Kohsuke Sumiyoshi, Shoichi Yamada, Hideyuki Suzuki. | FYSS_2017 | 2017 | Supernova equations of state including full nuclear ensemble with in-medium effects | Nucl. Phys. A 957, 188. | Eos |

54 | S. Furusawa, K. Sumiyoshi, S. Yamada, and H. Suzuki | FYSS_2013 | 2013 | New equations of state based on the liquid drop model of heavy nuclei and quantum approach to light nuclei for core-collapse supernova simulations | Astrophys. J. 772,95 | Eos |

55 | S. Furusawa, S. Yamada, K. Sumiyoshi, and H. Suzuki | FYSS_2011 | 2011 | A new baryonic equation of state at sub-nuclear densities for core-collapse simulations | Astrophys. J 738,178 | Eos |

56 | V. Dexheimer and S. Schramm | DS_2008 | 2008 | Proto-Neutron and Neutron Stars in a Chiral SU(3) Model | Astrophys. J. 683, 943 | Eos |

57 | T. Schurhoff, S. Schramm, V. Dexheimer | SSD_2010 | 2010 | Neutron stars with small radii - the role of Delta resonances | Astrophys. J. 724, L74 | Eos |

58 | V. Dexheimer, R. Negreiros , S. Schramm | DNS_2015 | 2015 | Reconciling Nuclear and Astrophysical Constraints | Phys. Rev. C 92, no. 1, 012801 | Eos |

49 | M. Marques, M. Oertel, M. Hempel, J. Novak | MOHN_17 | 2017 | A new temperature dependent hyperonic equation of state: application to rotating neutron star models and I-Q-relations | Phys.Rev. C96, 045806 | Eos |

61 | M. Baldo, I. Bombaci and F. Burgio | BBB_1997 | 1997 | Microscopic nuclear equation of state with three-body forces and neutron star structure | Astron.Astrophys. 328, 274 | Eos |

62 | V. Dexheimer | DEX_2017 | 2017 | Tabulated Neutron Star Equations of State Modelled within the Chiral Mean Field Model | Publications of the Astronomical Society of Australia 34 | Eos |

63 | I. Bombaci and D. Logoteta | BL_2018 | 2018 | Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions | Astron. and Astrophys. 609, A128 | Eos |

65 | E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer | CBHMS_1998 | 1998 | A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities | Nucl. Phys. A 635, 231 | Eos |

66 | J. Duflo and A. P. Zuker | DZ_1995 | 1995 | Microscopic mass formulas | Phys. Rev. C 52, R23 | Eos |

67 | D. Vautherin | V_1996 | 1996 | Many-body methods at finite temperature | Adv. Nucl. Phys. 22, 123 | Eos |

68 | M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, | AME_2012 | 2012 | The Ame2012 atomic mass evaluation | Chin. Phys. C 36, 1603 | Eos |

69 | Typel, S. | T_2018 | 2018 | Equations of state for astrophysical simulations from generalized relativistic density functionals | J. Phys. G 45, 11400. | Eos |

71 | Typel, S., Wolter, H.H., Röpke, G., Blaschke, D. | TWRB_2014 | 2014 | Effects of the liquid-gas phase transition and cluster formation on the symmetry energy | Eur. Phys. J. A50, 17 | Eos |

72 | Typel, S. and Wolter, H.H. | TW_1999 | 1999 | Relativistic mean field calculations with density dependent meson nucleon coupling | Nucl. Phys. A656 ,331 | Eos |

73 | Voskresenskaya, M.D. and Typel, S. | VT_2012 | 2012 | Constraining mean-field models of the nuclear matter equation of state at low densities | Nucl. Phys. A887, 42 | Eos |

74 | M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu | WGKH_2016 | 2017 | The NUBASE2016 evaluation of nuclear properties | Chinese Physics C41, 030003 | Eos |

75 | G. Baym, T. Hatsuda, T. Kojo, P.D. Powell, Y. Song, T. Takatsuka | BHK_2018 | 2018 | From hadrons to quarks in neutron stars: a review | Rept.Prog.Phys. 81, 056902 | Eos |

77 | A.S. Schneider, L. Roberts, C.D. Ott | SRO_17 | 2017 | Open-source nuclear equation of state framework based on the liquid-drop model with Skyrme interaction | Phys.Rev. C96, 065802 | Eos |

78 | A.S. Schneider, C. Constantinou, B. Muccioli, M. Prakash | SCMP_2019 | 2019 | The APR equation of state for simulations of supernovae, neutron stars and binary mergers | arXiv:1901.09652 | Eos |

81 | S. S. Bao, J. N. Hu, Z. W. Zhang, and H. Shen | BHZS_2014 | 2014 | Effects of the symmetry energy on properties of neutron star crusts near the neutron drip density | Phys. Rev. C 90, 045802 | Eos |

82 | H. Shen, F. Ji, J. Hu, K. Sumiyoshi | SJHS_2020 | 2020 | Effects of symmetry energy on equation of state for simulations of core-collapse supernovae and neutron-star mergers | arXiv:2001.10143 | Eos |

80 | K. Sumiyoshi, K. Nakazato, H. Suzuki, J. Hu, H. Shen | SNSHS_2019 | 2019 | Influence of density dependence of symmetry energy in hot and dense matter for supernova simulations | Astrophys. J 887, 110 | Eos |

64 | Ad. R. Raduta, F. Gulminelli | RG_2018 | 2019 | Nuclear Statistical Equilibrium Equation of State for Core Collapse | Nucl.Phys. A983, 252 | Eos |

59 | M. Fortin, M. Oertel, C. Providência | FOP_17 | 2018 | Hyperons in hot dense matter: what do the constraints tell us for equation of state? | Publ.Astron.Soc.Austral. 35, 44 | Eos |

85 | Niels-Uwe Friedrich Bastian | B_2021 | 2021 | Phenomenological quark-hadron equations of state with first-order phase transitions for astrophysical applications | Phys. Rev. D 103, 023001 | Eos |

86 | M. A. R. Kaltenborn, N.-U. F. Bastian, and D. B. Blaschke | KBB_2017 | 2017 | Quark-nuclear hybrid star equation of state with excluded volume effects | Phys. Rev. D 96, 056024. | Eos |

87 | T. Fischer, N.-U. F. Bastian, M.-R. Wu, P. Baklanov, E. Sorokina, S. Blinnikov, S. Typel, T. Klähn, D. B. Blaschke | FBW_2018 | 2018 | Quark deconfinement as a supernova explosion engine for massive blue supergiant stars | Nature Astronomy 2, 980 | Eos |

89 | Andreas Bauswein, Sebastian Blacker, Vimal Vijayan, Nikolaos Stergioulas, Katerina Chatziioannou, James A. Clark, Niels-Uwe F. Bastian, David B. Blaschke, Mateusz Cierniak, and Tobias Fischer | BBV_2020 | 2020 | Equation of state constraints from the threshold binary mass for prompt collapse of neutron star mergers | Phys. Rev. Lett. 125, 141103 | Eos |

90 | Sebastian Blacker, Niels-Uwe F. Bastian, Andreas Bauswein, David B. Blaschke, Tobias Fischer, Micaela Oertel, Theodoros Soultanis, and Stefan Typel | BBB_2020 | 2020 | Constraining the onset density of the hadron-quark phase transition with gravitational-wave observations | Phys. Rev. D 102, 123023 | Eos |

83 | M. Oertel, A. Pascal, M. Mancini, J. Novak | OPMN_2020 | 2020 | Improved neutrino-nucleon interactions in dense and hot matter for numerical simulations | Phys Rev. C102, 035802 | Eos |

91 | Andrew W. Steiner, Madappa Prakash, James M. Lattimer, Paul J. Ellis | SPLE_2005 | 2005 | Isospin asymmetry in nuclei and neutron stars | Phys. Rep. 411, 325 | Eos |

92 | L.G. Cao, U. Lombardo, C.W. Shen, Nguyen Van Giai | CLSG_2006 | 2006 | From Brueckner approach to Skyrme-type energy density functional | Phys. Rev. C 73, 014313 | Eos |

93 | F. Tondeur, M. Brack, M. Farine, J.M. Pearson | TBFP_1984 | 1984 | Static nuclear properties and the parametrisation of Skyrme forces | Nucl. Phys. A 420, 297 | Eos |

94 | V. Dexheimer and S. Schramm | VS_2010 | 2010 | A Novel Approach to Model Hybrid Stars | Phys.Rev.C 81, 045201 | Eos |

95 | V. Dexheimer, R.O. Gomes, T. Klähn, S. Han, M. Salinas | VGTHS_2021 | 2021 | GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom | Phys.Rev.C 103, 2 | Eos |

79 | K. Otto, M. Oertel, B.-J. Schaefer | OOS_2019 | 2020 | Hybrid and quark star matter based on a non-perturbative equation of state | Phys. Rev. D 101, 103021 | Eos |

96 | K. Otto, M. Oertel, B.-J. Schaefer | OOS_2020 | 2020 | Nonperturbative quark matter equations of state with vector interactions | Eur.Phys.J.ST 229, 3629 | Eos |

88 | Andreas Bauswein, Niels-Uwe F. Bastian, David B. Blaschke, Katerina Chatziioannou, James A. Clark, Tobias Fischer, and Micaela Oertel | BBB_2019 | 2019 | Identifying a first-order phase transition in neutron star mergers through gravitational waves | Phys. Rev. Lett. 122, 061102 | Eos |

97 | N. Jokela, M. Jarvinen and J. Remes | JJR_2019 | 2019 | Holographic QCD in the Veneziano limit and neutron stars | JHEP 03, 041 | Eos |

98 | T. Ishii, M. Jarvinen and G. Nijs | IJN_2019 | 2019 | Cool baryon and quark matter in holographic QCD | JHEP 07, 003 | Eos |

84 | T. Malik, S. Banik and Debades Bandyopadyay | MBB_2021 | 2021 | New equation of state involving Bose-Einstein condensate of antikaon for supernova and neutron star merger simulations | Euro. Phys. J Special Topics, 230, 561 | Eos |

76 | G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, and H. Togashi | BFH_2019 | 2019 | New neutron star equation of state with quark-hadron crossover | Astrophys.J. 885, 42 | Eos |

99 | C. Ecker, M. Jarvinen, G. Nijs and W. van der Schee | EJNS_2020 | 2020 | Gravitational waves from holographic neutron star mergers | Phys. Rev. D 101, 103006 | Eos |

100 | N. Jokela, M. Jarvinen, G. Nijs and J. Remes | JJNR_2021 | 2021 | Unified weak and strong coupling framework for nuclear matter and neutron stars | Phys. Rev. D 103, 086004 | Eos |

70 | Pais, H. and Typel, S. | PT_2017 | 2017 | Comparison of equation of state models with different cluster dissolution mechanisms | Nuclear Particle Correlations and Cluster Physics, World Scientific, Singapore, pp. 95-132 | Eos |

101 | T. Malik, S. Banik & D. Bandyopadhyay | MBB_2021b | 2021 | Equation of State table with hyperon and antikaon for supernova and neutron star merger | Astrophysical Journal, 910,96 | Eos |

102 | R. Negreiros, L. Tolos, M. Centelles, A. Ramos, and V. Dexheimer | NTCRD_2018 | 2018 | Cooling of Small and Massive Hyperonic Stars | Astrophys. J. 863, 104 | Eos |

103 | C. Providência, M. Fortin, H. Pais, and A. Rabhi | PFPR_2019 | 2019 | Hyperonic stars and the symmetry energy | Astron. Space Sci. 6, 13 | Eos |

104 | C. J. Horowitz and J. Piekarewicz | HP_2001 | 2001 | Neutron Star Structure and the Neutron Radius of 208Pb | Phys. Rev. Lett. 86, 5647 | Eos |

105 | C. J. Horowitz and J. Piekarewicz | HPb_2001 | 2001 | Neutron radii of 208Pb and neutron stars | Phys. Rev. C 64, 062802 | Eos |

106 | H. Pais and C. Providência | PP_2016 | 2016 | Vlasov formalism for extended relativistic mean field models: The crust-core transition and the stellar matter equation of state | Phys. Rev. C 94, 015808 | Eos |

107 | P.A.M. Guichon | G_1988 | 1988 | A Possible Quark Mechanism for the Saturation of Nuclear Matter | Phys.Lett.B 200, 235 | Eos |

108 | P.A.M. Guichon, J.R. Stone, A.W. Thomas | GST_2018 | 2018 | Quark–Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond | Prog.Part.Nucl.Phys. 100, 262 | Eos |

109 | J.R. Stone, V. Dexheimer, P.A.M. Guichon, A.W. Thomas, S. Typel | SDGTT_2021 | 2021 | Equation of state of hot dense hyperonic matter in the Quark–Meson-Coupling (QMC-A) model | Mon.Not.Roy.Astron.Soc. 502, 3476 | Eos |

110 | O. Boukari, H. Pais, S. Antić, and C. Providência | BPAP_2021 | 2021 | Critical properties of calibrated relativistic mean-field models for the transition to warm, nonhomogeneous nuclear and stellar matter | Phys. Rev. C 103, 055804 | Eos |

111 | W.-C. Chen and J. Piekarewicz | CP_2014 | 2014 | Building relativistic mean field models for finite nuclei and neutron stars | Phys. Rev. C 90, 044305 | Eos |

112 | G. A. Lalazissis, T. Niksic, D. Vretenar, and P. Ring | LNVR_2005 | 2005 | New relativistic mean-field interaction with density-dependent meson-nucleon couplings | Phys. Rev. C 71, 024312 | Eos |

113 | G. Grams, J. Margueron, R. Somasundaram and S. Reddy | GMSR_2021 | 2021 | — | submitted | Eos |

114 | T. Kojo, G. Baym, and T. Hatsuda, | KBH_2021 | 2021 | QHC21 equation of state of neutron star matter – in light of 2021 NICER data | arXiv: 2111.11919 | Eos |

115 | C. Drischler, S. Han, J.M. Lattimer, M. Prakash, S. Reddy, and T. Zhao | DHLPR_2021 | 2021 | Limiting masses and radii of neutron stars and their implications | Phys. Rev. C 103, 045808 | Eos |

116 | M. Oertel, M. Hempel, T. Klähn, S. Typel | OHKT_2017 | 2017 | Equations of state for supernovae and compact stars | Rev. Mod. Phys. 89, 015007 | Eos |

117 | S. Typel, M. Oertel, T. Klähn | TOK_2015 | 2015 | CompOSE CompStar online supernova equations of state harmonising the concert of nuclear physics and astrophysics | Phys.Part.Nucl. 46, 633 | Eos |

118 | Ad. R. Raduta, M. Oertel, A. Sedrakian | ROS_2020 | 2020 | Proto-neutron stars with heavy baryons and universal relations | MNRAS 499, 914 | Eos |

119 | A.R. Raduta | R_2022 | 2022 | — | in preparation | Eos |

120 | X. Vinas, C. Gonzalez-Boquera, M. Centelles, C. Mondal and L. M. Robledo | VGCMR_2021 | 2021 | Unified Equation of State for Neutron Stars Based on the Gogny Interaction | Symmetry 13, 1613 | Eos |

121 | V. Allard and N. Chamel | AC_2021 | 2021 | 1S0 Pairing Gaps, Chemical Potentials and Entrainment Matrix in Superfluid Neutron-Star Cores for the Brussels–Montreal Functionals | Universe 7, 470 | Eos |

122 | J. M. Pearson and N. Chamel | PC_2022 | 2022 | Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. III. Inclusion of microscopic corrections to pasta phases | Phys. Rev. C 105, 015803 | Eos |

123 | J. M. Pearson, N. Chamel, and A. Y. Potekhin | PCP_2020 | 2020 | Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. II. Pasta phases in semiclassical approximation | Phys. Rev. C 101, 015802 | Eos |

124 | J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C. Ducoin, A. K. Dutta, and S. Goriely | PCP_2018 | 2018 | Unified equations of state for cold non-accreting neutron stars with Brussels–Montreal functionals – I. Role of symmetry energy | MNRAS 481, 2994 | Eos |

125 | S. Goriely, N. Chamel, and J. M. Pearson | GCP_2013 | 2013 | Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals | Phys. Rev. C 88, 024308 | Eos |

126 | L. Perot, N. Chamel, and A. Sourie | PCS_2019 | 2019 | Role of the symmetry energy and the neutron-matter stiffness on the tidal deformability of a neutron star with unified equations of state | Phys. Rev. C 100, 035801 | Eos |

127 | Y. Xu, S. Goriely, A. Jorissen, G. L. Chen, and M. Arnould | XGJCA_2013 | 2013 | Databases and tools for nuclear astrophysics applications BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN) | Astronomy & Astrophysics 549, A106 | Eos |

128 | A. Welker, et al | W_2017 | 2017 | Binding Energy of 79Cu: Probing the Structure of the Doubly Magic 78Ni from Only One Proton Away | Phys. Rev. Lett. 119, 192502 | Eos |

129 | C. Mondal, X. Vinas, M. Centelles and J. N. De | MVCD_2020 | 2020 | Structure and composition of the inner crust of neutron stars from Gogny interactions | Phys. Rev. C 102,015802 | Eos |

130 | C. Gonzalez-Boquera, M. Centelles, X. Vinas, L. M. Robledo | GCVR_2018 | 2018 | New Gogny interaction suitable for astrophysical applications | Phys. Lett. B 779, 195. | Eos |

131 | S. Typel , M. Oertel, T. Klähn, D. Chatterjee, V. Dexheimer et al. | TOK_2022 | 2022 | CompOSE Reference Manual | arxiv: 2203.03209 | Eos |

132 | A. Clevinger, J. Corkish, K. Aryal, V. Dexheimer | CCAD_2022 | 2022 | Hybrid equations of state for neutron stars with hyperons and deltas | Eur.Phys.J.A 58, 96 | Eos |

133 | V. Dexheimer, R. O. Gomes, S. Schramm, H. Pais | DGSP_2019 | 2019 | What do we learn about vector interactions from GW170817? | J. Phys. G 46, 034002 | Eos |

134 | L. Suleiman, M. Fortin, J. L. Zdunik, P. Haensel | SFZH_2021 | 2021 | Influence of the crust on the neutron star macrophysical quantities and universal relations | Phys.Rev.C 104, 015801 | Eos |

135 | M. G. Alford, L. Brodie, A. Haber, and I. Tews | ABHT_2022 | 2022 | Relativistic mean-field theories for neutron-star physics based on chiral effective field theory | arXiv: 2205.10283 | Eos |

136 | C.-J. Xia, T. Maruyama, A. Li, B. Y. Sun, W.-H. Long, and Y.-X. Zhang | XMLSL_2022 | 2022 | Unified neutron star EOSs and neutron star structures in RMF models | Commun.Theor. Phys. 74, 095303 | Eos |

137 | C.-J. Xia, B. Y. Sun, T. Maruyama, W.-H. Long, and A. Li | XSMLL_2022 | 2022 | Unified nuclear matter equations of state constrained by the in-medium balance in density-dependent covariant density functionals | Phys. Rev. C 105, 045803 | Eos |

138 | B. Wei, Q. Zhao, Z.-H. Wang, J. Geng, B.-Y. Sun, Y.-F. Niu, and W.-H. Long | WZWG_2020 | 2020 | Novel relativistic mean field Lagrangian guided by pseudo-spin symmetry restoration | Chin. Phys. C 44, 074107 | Eos |

139 | A. Taninah, S. Agbemava, A. Afanasjev, and P. Ring | TAAR_2020 | 2020 | Parametric correlations in energy density functionals | Phys. Lett. B 800, 135065 | Eos |

140 | T. Maruyama, T. Tatsumi, D. N. Voskresensky, T. Tanigawa, and S. Chiba | MTVTC_2005 | 2005 | Nuclear pasta structures and the charge screening effect | Phys. Rev. C 72, 015802 | Eos |

141 | W.-H. Long, J. Meng, N. V. Giai, and S.-G. Zhou | LMGZ_2004 | 2004 | New effective interactions in RMF theory with nonlinear terms and density dependent meson nucleon coupling | Phys. Rev. C 69, 034319 | Eos |