Home
  EoS
All families
Cold Neutron Star EoS
Models with hyperons and Delta-resonances
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
hybrid (quark-hadron) model
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
models with hyperons
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
Models with kaon condensate
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
nucleonic models
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
quark models
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
All
Cold Matter EoS
Models with hyperons and Delta-resonances
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
hybrid (quark-hadron) model
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
models with hyperons
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
Models with kaon condensate
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
nucleonic models
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
quark models
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
All
Neutron Matter EoS
Models with hyperons and Delta-resonances
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
hybrid (quark-hadron) model
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
models with hyperons
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
Models with kaon condensate
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
nucleonic models
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
quark models
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
All
General Purpose EoS
Models with hyperons and Delta-resonances
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
hybrid (quark-hadron) model
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
models with hyperons
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
Models with kaon condensate
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
nucleonic models
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
quark models
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
All
Neutron star crust EoS
Models with hyperons and Delta-resonances
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
hybrid (quark-hadron) model
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
models with hyperons
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
Models with kaon condensate
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
nucleonic models
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
quark models
Holographic models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Non-relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Microscopic calculations
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
Relativistic density functional models
Thomas-Fermi calculation
Non unified models (crust model matched)
NSE models
Unified models
SNA models
All
All
All
  Bibliography
  Downloads
  Software
  Manual
  Resources
  Select EoS
  Log In
  Newsletters
  External Links
  Contacts
  About
ID Authors Ref Year Title Journal
46 Y. Sugahara, H. Toki STNP_1994 1994 Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms Nucl. Phys. A 579, 557 Eos
38 P.-G. Reinhard et al. RPRC_1999 1999 Shape coexistence and the effective nucleon-nucleon interaction Phys. Rev. C 60, 014316 Eos
37 P.-G. Reinhard and H. Flocard RFNP_1995 1995 Nuclear effective forces and isotope shifts Nucl. Phys. A 584, 467 Eos
23 H. Toki, D. Hirata, Y. Sugahara, K. Sumiyoshi, and I. Tanihata THSSN_1995 1995 Relativistic many body approach for unstable nuclei and supernova Nucl. Phys. A 588, 357 Eos
22 H. S. Köhler KNPA_1976 1976 Skyrme force and the mass formula Nucl. Phys. A 258, 301 Eos
31 M. Hempel and J. Schaffner-Bielich HSNP_2010 2010 Statistical Model for a Complete Supernova Equation of State Nucl. Phys. A 837, 210 Eos
36 P. Danielewicz et J. Lee DLNP_2009 2009 Symmetry Energy I: Semi-Infinite Matter Nucl. Phys. A818, 36 Eos
15 F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, and G. Shen FHPSP_2010 2010 Relativistic effective interaction for nuclei, giant resonances, and neutron stars Phys. Rev. C 82, 055803 Eos
45 X. Roca-Maza and J. Piekarewicz RPPR_2008 2008 Impact of the symmetry energy on the outer crust of nonaccreting neutron stars Phys. Rev. C 78, 025807 Eos
44 T. Gaitanos et al. GNPA_2004 2004 On the Lorentz structure of the symmetry energy Nucl. Phys. A732, 24 Eos
42 S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H.H. Wolter TRKBP_2010 2010 Composition and thermodynamics of nuclear matter with light clusters Phys. Rev. C 81, 015803 Eos
41 S. Banik, M. Hempel, and D. Bandyopadhyay BHB_2014 2014 New Hyperon Equations of State for Supernovae and Neutron Stars in Density-dependent Hadron Field Theory Astrophys.J.Suppl. 214, 22 Eos
40 S. Balberg and A. Gal BGNP_1997 1997 An effective equation of state for dense matter with strangeness Nucl. Phys. A 625, 435 Eos
39 P. Möller, J.R. Nix, and K.-L. Kratz MNKA_1997 1997 NUCLEAR PROPERTIES FOR ASTROPHYSICAL AND RADIOACTIVE-ION-BEAM APPLICATIONS Atomic Data and Nuclear Data Tables 66, 131 Eos
35 N. K. Glendenning and S. A. Moszkowski GMPR_1991 1991 Reconciliation of neutron star masses and binding of the lambda in hypernuclei Phys. Rev. Lett. 67, 2414 Eos
34 M. Oertel, C. Providencia, F. Gulminelli, A. Raduta OPGR_2015 2015 Hyperons in neutron star matter within relativistic mean-field models J. Phys. G 42, 075202 Eos
32 M. Hempel, T. Fischer, J. Schaffner-Bielich, and M. Liebendörfer HFSLA_2012 2012 New Equations of State in Simulations of Core-Collapse Supernovae Astrophys. J. 748, 70 Eos
30 L. Geng, H. Toki, and J. Meng GTMP_2005 2005 Masses, deformations and charge radii: Nuclear ground-state properties in the relativistic mean field model Prog. Theor. Phys. 113, 785 Eos
27 J. M. Lattimer and F. D. Swesty LSNP_1991 1991 A Generalized equation of state for hot, dense matter Nucl. Phys. A 535, 331 Eos
26 J. Friedrich and P.-G. Reinhard FRPR_1986 1986 Skyrme-force parametrization: Least-squares fit to nuclear ground-state properties Phys. Rev. C 33, 335 Eos
21 H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi STOSP_1998 1998 Relativistic equation of state of nuclear matter for supernova explosion Prog. Theor. Phys. 100, 1013 Eos
19 H. Shen, F. Yang, H. Toki SYTP_2006 2006 Double-Lambda hypernuclei in the relativistic mean-field theory Prog. Theor. Phys. 115, 325 Eos
17 G.A. Lalazissis, S. Raman, and P. Ring LRRA_1999 1999 Ground-State Properties of Even-Even Nuclei in the Relativistic Mean-Field Theory Atomic Data and Nuclear Data Tables 71, 1 Eos
13 F. Gulminelli, A. .R. Raduta and M. Oertel GROP_2012 2012 Phase transition towards strange matter Phys. Rev. C 86 , 025805 Eos
11 F. Grill, H. Pais, C. Providencia, I. Vidana and S. S. Avancini GPPVP_2014 2014 Equation of state and thickness of the inner crust of neutron stars Phys. Rev. C 90, 045803 Eos
9 E. Chabanat C_1995 1995 Interactions effectives pour des conditions extrêmes d'isospin (in french) Ph.D. thesis, University Claude Bernard Lyon-1, Lyon, France Eos
5 B. K. Agrawal, S. Shlomo and V. Kim Au ASKP_2003 2003 Nuclear matter incompressibility coefficient in relativistic and nonrelativistic microscopic models Phys. Rev. C 68 , 031304 Eos
2 A.W. Steiner, M. Hempel, and T. Fischer SHF_2013 2013 Core-collapse supernova equations of state based on neutron star observations Astrophys.J. 774,17 Eos
1 A. Akmal, V. R. Pandharipande and D. G. Ravenhall APRP_1998 1998 The Equation of state of nucleon matter and neutron star structure Phys. Rev. C 58, 1804 Eos
6 B. Peres, M. Oertel and J. Novak PONP_2013 2013 Influence of pions and hyperons on stellar black hole formation Phys. Rev. D 87, 043006 Eos
29 L. Bennour et al. BPRC_1989 1989 Charge distributions of Pb-208, Pb-206, and Tl-205 and the mean-field approximation Phys. Rev. C 40 2834 Eos
28 K. Sumiyoshi, C. Ishizuka, A. Ohnishi, S. Yamada, H. Suzuki SIOYA_2009 2009 Emergence of hyperons in failed supernovae: trigger of the black hole formation Astrophys.J. 690 L43 Eos
25 I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich, F.-K. Thielemann, M. Liebendörfer SFHPJ_2010 2010 Strange quark matter in explosive astrophysical systems Journ. of Phys. G 37, 094064 Eos
24 I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich, A. Mezzacappa, F.-K. Thielemann, M. Liebendörfer SFHPP_2009 2009 Signals of the QCD phase transition in core-collapse supernovae Phys. Rev. Lett. 102, 081101 Eos
20 H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi STOSN_1998 1998 Relativistic equation of state of nuclear matter for supernova and neutron star Nucl. Phys. A 637, 435 Eos
18 G. Baym, C. Pethick and P. Sutherland BPSA_1971 1971 The Ground state of matter at high densities: Equation of state and stellar models Astrophys. J. 170, 299 Eos
16 G.A. Lalazissis, J. König, and P. Ring LKRP_1997 1997 A New parametrization for the Lagrangian density of relativistic mean field theory Phys. Rev. C 55, 540 Eos
14 F. Gulminelli, A. .R. Raduta, M. Oertel and J. Margueron GROMP_2013 2013 Strangeness-driven phase transition in (proto-)neutron star matter Phys. Rev. C 87, 05580 Eos
12 F. Gulminelli and Ad. R. Raduta GR_2015 2015 Unified treatment of subsaturation stellar matter at zero and finite temperature Phys. Rev. C 92, 055803 Eos
10 F. Douchin, P. Haensel DHA_2001 2001 A unified equation of state of dense matter and neutron star structure Astronomy and Astrophysics 380, 151 Eos
8 E. Chabanat et al. CNPA_1997 1997 A Skyrme parametrization from subnuclear to neutron star densities Nucl. Phys. A 627, 710 Eos
7 C. Ishizuka, A. Ohnishi, K. Tsubakihara, K. Sumiyoshi, S. Yamada IOTSJ_2008 2008 Tables of Hyperonic Matter Equation of State for Core-Collapse Supernovae Journ. of Phys. G 35 085201 Eos
4 B. K. Agrawal, S. Shlomo and V. Kim Au ASKP_2005 2005 Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach Phys. Rev. C 72 , 014310 Eos
3 B.G. Todd-Rutel and J. Piekarewicz TPPR_2005 2005 Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter Phys. Rev. Lett. 95 , 122501 Eos
43 T. Fischer, I. Sagert, G. Pagliara, M. Hempel, J. Scahaffner-Bielich, T. Rauscher, F.-K. Thielemann, R. Kappeli, G. Martinez-Pinedo, M. Liebendörfer FSPHA_2011 2011 Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase ApJ Suppl. 194, 39 Eos
48 G. Shen, C.J. Horowitz, S. Teige SHT_2011 2011 A New Equation of State for Astrophysical Simulations Phys.Rev. C83, 035802 Eos
47 G. Shen, C.J. Horowitz, E. O'Connor SHO_2011 2011 A Second Relativistic Mean Field and Virial Equation of State for Astrophysical Simulations Phys.Rev. C83, 065808 Eos
33 M. Oertel, A. F. Fantina and J. Novak OFNP_2012 2012 An extended equation of state for core-collapse simulations Phys. Rev. C 85, 055806 Eos
60 H. Shen, H. Toki, K. Oyamatsu , K. Sumiyoshi STOS_2011 2011 Relativistic Equation of State for Core-Collapse Supernova Simulations Astrophys.J.Suppl. 197, 20 Eos
51 H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki and M. Takano TNTYST_17 2017 Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces Nucl. Phys. A 961, 78 Eos
52 S. Furusawa, H. Togashi, H. Nagakura, K. Sumiyoshi, S. Yamada, H. Suzuki & M. Takano FTNS_2017 2017 A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble J. Phys. G 44,9 Eos
53 Shun Furusawa, Kohsuke Sumiyoshi, Shoichi Yamada, Hideyuki Suzuki. FYSS_2017 2017 Supernova equations of state including full nuclear ensemble with in-medium effects Nucl. Phys. A 957, 188. Eos
54 S. Furusawa, K. Sumiyoshi, S. Yamada, and H. Suzuki FYSS_2013 2013 New equations of state based on the liquid drop model of heavy nuclei and quantum approach to light nuclei for core-collapse supernova simulations Astrophys. J. 772,95 Eos
55 S. Furusawa, S. Yamada, K. Sumiyoshi, and H. Suzuki FYSS_2011 2011 A new baryonic equation of state at sub-nuclear densities for core-collapse simulations Astrophys. J 738,178 Eos
56 V. Dexheimer and S. Schramm DS_2008 2008 Proto-Neutron and Neutron Stars in a Chiral SU(3) Model Astrophys. J. 683, 943 Eos
57 T. Schurhoff, S. Schramm, V. Dexheimer SSD_2010 2010 Neutron stars with small radii - the role of Delta resonances Astrophys. J. 724, L74 Eos
58 V. Dexheimer, R. Negreiros , S. Schramm DNS_2015 2015 Reconciling Nuclear and Astrophysical Constraints Phys. Rev. C 92, no. 1, 012801 Eos
49 M. Marques, M. Oertel, M. Hempel, J. Novak MOHN_17 2017 A new temperature dependent hyperonic equation of state: application to rotating neutron star models and I-Q-relations Phys.Rev. C96, 045806 Eos
61 M. Baldo, I. Bombaci and F. Burgio BBB_1997 1997 Microscopic nuclear equation of state with three-body forces and neutron star structure Astron.Astrophys. 328, 274 Eos
62 V. Dexheimer DEX_2017 2017 Tabulated Neutron Star Equations of State Modelled within the Chiral Mean Field Model Publications of the Astronomical Society of Australia 34 Eos
63 I. Bombaci and D. Logoteta BL_2018 2018 Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions Astron. and Astrophys. 609, A128 Eos
65 E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer CBHMS_1998 1998 A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities Nucl. Phys. A 635, 231 Eos
66 J. Duflo and A. P. Zuker DZ_1995 1995 Microscopic mass formulas Phys. Rev. C 52, R23 Eos
67 D. Vautherin V_1996 1996 Many-body methods at finite temperature Adv. Nucl. Phys. 22, 123 Eos
68 M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, AME_2012 2012 The Ame2012 atomic mass evaluation Chin. Phys. C 36, 1603 Eos
69 Typel, S. T_2018 2018 Equations of state for astrophysical simulations from generalized relativistic density functionals J. Phys. G 45, 11400. Eos
71 Typel, S., Wolter, H.H., Röpke, G., Blaschke, D. TWRB_2014 2014 Effects of the liquid-gas phase transition and cluster formation on the symmetry energy Eur. Phys. J. A50, 17 Eos
72 Typel, S. and Wolter, H.H. TW_1999 1999 Relativistic mean field calculations with density dependent meson nucleon coupling Nucl. Phys. A656 ,331 Eos
73 Voskresenskaya, M.D. and Typel, S. VT_2012 2012 Constraining mean-field models of the nuclear matter equation of state at low densities Nucl. Phys. A887, 42 Eos
74 M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu WGKH_2016 2017 The NUBASE2016 evaluation of nuclear properties Chinese Physics C41, 030003 Eos
75 G. Baym, T. Hatsuda, T. Kojo, P.D. Powell, Y. Song, T. Takatsuka BHK_2018 2018 From hadrons to quarks in neutron stars: a review Rept.Prog.Phys. 81, 056902 Eos
77 A.S. Schneider, L. Roberts, C.D. Ott SRO_17 2017 Open-source nuclear equation of state framework based on the liquid-drop model with Skyrme interaction Phys.Rev. C96, 065802 Eos
78 A.S. Schneider, C. Constantinou, B. Muccioli, M. Prakash SCMP_2019 2019 The APR equation of state for simulations of supernovae, neutron stars and binary mergers arXiv:1901.09652 Eos
81 S. S. Bao, J. N. Hu, Z. W. Zhang, and H. Shen BHZS_2014 2014 Effects of the symmetry energy on properties of neutron star crusts near the neutron drip density Phys. Rev. C 90, 045802 Eos
82 H. Shen, F. Ji, J. Hu, K. Sumiyoshi SJHS_2020 2020 Effects of symmetry energy on equation of state for simulations of core-collapse supernovae and neutron-star mergers arXiv:2001.10143 Eos
80 K. Sumiyoshi, K. Nakazato, H. Suzuki, J. Hu, H. Shen SNSHS_2019 2019 Influence of density dependence of symmetry energy in hot and dense matter for supernova simulations Astrophys. J 887, 110 Eos
64 Ad. R. Raduta, F. Gulminelli RG_2018 2019 Nuclear Statistical Equilibrium Equation of State for Core Collapse Nucl.Phys. A983, 252 Eos
59 M. Fortin, M. Oertel, C. Providência FOP_17 2018 Hyperons in hot dense matter: what do the constraints tell us for equation of state? Publ.Astron.Soc.Austral. 35, 44 Eos
85 Niels-Uwe Friedrich Bastian B_2021 2021 Phenomenological quark-hadron equations of state with first-order phase transitions for astrophysical applications Phys. Rev. D 103, 023001 Eos
86 M. A. R. Kaltenborn, N.-U. F. Bastian, and D. B. Blaschke KBB_2017 2017 Quark-nuclear hybrid star equation of state with excluded volume effects Phys. Rev. D 96, 056024. Eos
87 T. Fischer, N.-U. F. Bastian, M.-R. Wu, P. Baklanov, E. Sorokina, S. Blinnikov, S. Typel, T. Klähn, D. B. Blaschke FBW_2018 2018 Quark deconfinement as a supernova explosion engine for massive blue supergiant stars Nature Astronomy 2, 980 Eos
89 Andreas Bauswein, Sebastian Blacker, Vimal Vijayan, Nikolaos Stergioulas, Katerina Chatziioannou, James A. Clark, Niels-Uwe F. Bastian, David B. Blaschke, Mateusz Cierniak, and Tobias Fischer BBV_2020 2020 Equation of state constraints from the threshold binary mass for prompt collapse of neutron star mergers Phys. Rev. Lett. 125, 141103 Eos
90 Sebastian Blacker, Niels-Uwe F. Bastian, Andreas Bauswein, David B. Blaschke, Tobias Fischer, Micaela Oertel, Theodoros Soultanis, and Stefan Typel BBB_2020 2020 Constraining the onset density of the hadron-quark phase transition with gravitational-wave observations Phys. Rev. D 102, 123023 Eos
83 M. Oertel, A. Pascal, M. Mancini, J. Novak OPMN_2020 2020 Improved neutrino-nucleon interactions in dense and hot matter for numerical simulations Phys Rev. C102, 035802 Eos
91 Andrew W. Steiner, Madappa Prakash, James M. Lattimer, Paul J. Ellis SPLE_2005 2005 Isospin asymmetry in nuclei and neutron stars Phys. Rep. 411, 325 Eos
92 L.G. Cao, U. Lombardo, C.W. Shen, Nguyen Van Giai CLSG_2006 2006 From Brueckner approach to Skyrme-type energy density functional Phys. Rev. C 73, 014313 Eos
93 F. Tondeur, M. Brack, M. Farine, J.M. Pearson TBFP_1984 1984 Static nuclear properties and the parametrisation of Skyrme forces Nucl. Phys. A 420, 297 Eos
94 V. Dexheimer and S. Schramm VS_2010 2010 A Novel Approach to Model Hybrid Stars Phys.Rev.C 81, 045201 Eos
95 V. Dexheimer, R.O. Gomes, T. Klähn, S. Han, M. Salinas VGTHS_2021 2021 GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom Phys.Rev.C 103, 2 Eos
79 K. Otto, M. Oertel, B.-J. Schaefer OOS_2019 2020 Hybrid and quark star matter based on a non-perturbative equation of state Phys. Rev. D 101, 103021 Eos
96 K. Otto, M. Oertel, B.-J. Schaefer OOS_2020 2020 Nonperturbative quark matter equations of state with vector interactions Eur.Phys.J.ST 229, 3629 Eos
88 Andreas Bauswein, Niels-Uwe F. Bastian, David B. Blaschke, Katerina Chatziioannou, James A. Clark, Tobias Fischer, and Micaela Oertel BBB_2019 2019 Identifying a first-order phase transition in neutron star mergers through gravitational waves Phys. Rev. Lett. 122, 061102 Eos
97 N. Jokela, M. Jarvinen and J. Remes JJR_2019 2019 Holographic QCD in the Veneziano limit and neutron stars JHEP 03, 041 Eos
98 T. Ishii, M. Jarvinen and G. Nijs IJN_2019 2019 Cool baryon and quark matter in holographic QCD JHEP 07, 003 Eos
84 T. Malik, S. Banik and Debades Bandyopadyay MBB_2021 2021 New equation of state involving Bose-Einstein condensate of antikaon for supernova and neutron star merger simulations Euro. Phys. J Special Topics, 230, 561 Eos
76 G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, and H. Togashi BFH_2019 2019 New neutron star equation of state with quark-hadron crossover Astrophys.J. 885, 42 Eos
99 C. Ecker, M. Jarvinen, G. Nijs and W. van der Schee EJNS_2020 2020 Gravitational waves from holographic neutron star mergers Phys. Rev. D 101, 103006 Eos
100 N. Jokela, M. Jarvinen, G. Nijs and J. Remes JJNR_2021 2021 Unified weak and strong coupling framework for nuclear matter and neutron stars Phys. Rev. D 103, 086004 Eos
70 Pais, H. and Typel, S. PT_2017 2017 Comparison of equation of state models with different cluster dissolution mechanisms Nuclear Particle Correlations and Cluster Physics, World Scientific, Singapore, pp. 95-132 Eos
101 T. Malik, S. Banik & D. Bandyopadhyay MBB_2021b 2021 Equation of State table with hyperon and antikaon for supernova and neutron star merger Astrophysical Journal, 910,96 Eos
102 R. Negreiros, L. Tolos, M. Centelles, A. Ramos, and V. Dexheimer NTCRD_2018 2018 Cooling of Small and Massive Hyperonic Stars Astrophys. J. 863, 104 Eos
103 C. Providência, M. Fortin, H. Pais, and A. Rabhi PFPR_2019 2019 Hyperonic stars and the symmetry energy Astron. Space Sci. 6, 13 Eos
104 C. J. Horowitz and J. Piekarewicz HP_2001 2001 Neutron Star Structure and the Neutron Radius of 208Pb Phys. Rev. Lett. 86, 5647 Eos
105 C. J. Horowitz and J. Piekarewicz HPb_2001 2001 Neutron radii of 208Pb and neutron stars Phys. Rev. C 64, 062802 Eos
106 H. Pais and C. Providência PP_2016 2016 Vlasov formalism for extended relativistic mean field models: The crust-core transition and the stellar matter equation of state Phys. Rev. C 94, 015808 Eos
107 P.A.M. Guichon G_1988 1988 A Possible Quark Mechanism for the Saturation of Nuclear Matter Phys.Lett.B 200, 235 Eos
108 P.A.M. Guichon, J.R. Stone, A.W. Thomas GST_2018 2018 Quark–Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond Prog.Part.Nucl.Phys. 100, 262 Eos
109 J.R. Stone, V. Dexheimer, P.A.M. Guichon, A.W. Thomas, S. Typel SDGTT_2021 2021 Equation of state of hot dense hyperonic matter in the Quark–Meson-Coupling (QMC-A) model Mon.Not.Roy.Astron.Soc. 502, 3476 Eos
110 O. Boukari, H. Pais, S. Antić, and C. Providência BPAP_2021 2021 Critical properties of calibrated relativistic mean-field models for the transition to warm, nonhomogeneous nuclear and stellar matter Phys. Rev. C 103, 055804 Eos
111 W.-C. Chen and J. Piekarewicz CP_2014 2014 Building relativistic mean field models for finite nuclei and neutron stars Phys. Rev. C 90, 044305 Eos
112 G. A. Lalazissis, T. Niksic, D. Vretenar, and P. Ring LNVR_2005 2005 New relativistic mean-field interaction with density-dependent meson-nucleon couplings Phys. Rev. C 71, 024312 Eos
114 T. Kojo, G. Baym, and T. Hatsuda, KBH_2021 2021 QHC21 equation of state of neutron star matter – in light of 2021 NICER data arXiv: 2111.11919 Eos
115 C. Drischler, S. Han, J.M. Lattimer, M. Prakash, S. Reddy, and T. Zhao DHLPR_2021 2021 Limiting masses and radii of neutron stars and their implications Phys. Rev. C 103, 045808 Eos
116 M. Oertel, M. Hempel, T. Klähn, S. Typel OHKT_2017 2017 Equations of state for supernovae and compact stars Rev. Mod. Phys. 89, 015007 Eos
117 S. Typel, M. Oertel, T. Klähn TOK_2015 2015 CompOSE CompStar online supernova equations of state harmonising the concert of nuclear physics and astrophysics Phys.Part.Nucl. 46, 633 Eos
118 Ad. R. Raduta, M. Oertel, A. Sedrakian ROS_2020 2020 Proto-neutron stars with heavy baryons and universal relations MNRAS 499, 914 Eos
119 A.R. Raduta R_2022 2022 — in preparation Eos
120 X. Vinas, C. Gonzalez-Boquera, M. Centelles, C. Mondal and L. M. Robledo VGCMR_2021 2021 Unified Equation of State for Neutron Stars Based on the Gogny Interaction Symmetry 13, 1613 Eos
121 V. Allard and N. Chamel AC_2021 2021 1S0 Pairing Gaps, Chemical Potentials and Entrainment Matrix in Superfluid Neutron-Star Cores for the Brussels–Montreal Functionals Universe 7, 470 Eos
122 J. M. Pearson and N. Chamel PC_2022 2022 Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. III. Inclusion of microscopic corrections to pasta phases Phys. Rev. C 105, 015803 Eos
123 J. M. Pearson, N. Chamel, and A. Y. Potekhin PCP_2020 2020 Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. II. Pasta phases in semiclassical approximation Phys. Rev. C 101, 015802 Eos
124 J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C. Ducoin, A. K. Dutta, and S. Goriely PCP_2018 2018 Unified equations of state for cold non-accreting neutron stars with Brussels–Montreal functionals – I. Role of symmetry energy MNRAS 481, 2994 Eos
125 S. Goriely, N. Chamel, and J. M. Pearson GCP_2013 2013 Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals Phys. Rev. C 88, 024308 Eos
126 L. Perot, N. Chamel, and A. Sourie PCS_2019 2019 Role of the symmetry energy and the neutron-matter stiffness on the tidal deformability of a neutron star with unified equations of state Phys. Rev. C 100, 035801 Eos
127 Y. Xu, S. Goriely, A. Jorissen, G. L. Chen, and M. Arnould XGJCA_2013 2013 Databases and tools for nuclear astrophysics applications BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN) Astronomy & Astrophysics 549, A106 Eos
128 A. Welker, et al W_2017 2017 Binding Energy of 79Cu: Probing the Structure of the Doubly Magic 78Ni from Only One Proton Away Phys. Rev. Lett. 119, 192502 Eos
129 C. Mondal, X. Vinas, M. Centelles and J. N. De MVCD_2020 2020 Structure and composition of the inner crust of neutron stars from Gogny interactions Phys. Rev. C 102,015802 Eos
130 C. Gonzalez-Boquera, M. Centelles, X. Vinas, L. M. Robledo GCVR_2018 2018 New Gogny interaction suitable for astrophysical applications Phys. Lett. B 779, 195. Eos
131 S. Typel , M. Oertel, T. Klähn, D. Chatterjee, V. Dexheimer et al. TOK_2022 2022 CompOSE Reference Manual arxiv: 2203.03209 Eos
132 A. Clevinger, J. Corkish, K. Aryal, V. Dexheimer CCAD_2022 2022 Hybrid equations of state for neutron stars with hyperons and deltas Eur.Phys.J.A 58, 96 Eos
133 V. Dexheimer, R. O. Gomes, S. Schramm, H. Pais DGSP_2019 2019 What do we learn about vector interactions from GW170817? J. Phys. G 46, 034002 Eos
134 L. Suleiman, M. Fortin, J. L. Zdunik, P. Haensel SFZH_2021 2021 Influence of the crust on the neutron star macrophysical quantities and universal relations Phys.Rev.C 104, 015801 Eos
135 M. G. Alford, L. Brodie, A. Haber, and I. Tews ABHT_2022 2022 Relativistic mean-field theories for neutron-star physics based on chiral effective field theory arXiv: 2205.10283 Eos
136 C.-J. Xia, T. Maruyama, A. Li, B. Y. Sun, W.-H. Long, and Y.-X. Zhang XMLSL_2022 2022 Unified neutron star EOSs and neutron star structures in RMF models Commun.Theor. Phys. 74, 095303 Eos
137 C.-J. Xia, B. Y. Sun, T. Maruyama, W.-H. Long, and A. Li XSMLL_2022 2022 Unified nuclear matter equations of state constrained by the in-medium balance in density-dependent covariant density functionals Phys. Rev. C 105, 045803 Eos
138 B. Wei, Q. Zhao, Z.-H. Wang, J. Geng, B.-Y. Sun, Y.-F. Niu, and W.-H. Long WZWG_2020 2020 Novel relativistic mean field Lagrangian guided by pseudo-spin symmetry restoration Chin. Phys. C 44, 074107 Eos
139 A. Taninah, S. Agbemava, A. Afanasjev, and P. Ring TAAR_2020 2020 Parametric correlations in energy density functionals Phys. Lett. B 800, 135065 Eos
140 T. Maruyama, T. Tatsumi, D. N. Voskresensky, T. Tanigawa, and S. Chiba MTVTC_2005 2005 Nuclear pasta structures and the charge screening effect Phys. Rev. C 72, 015802 Eos
141 W.-H. Long, J. Meng, N. V. Giai, and S.-G. Zhou LMGZ_2004 2004 New effective interactions in RMF theory with nonlinear terms and density dependent meson nucleon coupling Phys. Rev. C 69, 034319 Eos
142 T. Demircik, C. Ecker, and M. Jarvinen DEJ_2022 2022 Dense and Hot QCD at Strong Coupling arXiv:2112.12157 Eos
144 Nadine Hornick, Laura Tolos, Andreas Zacchi, Jan-Erik Christian, and Jürgen Schaffner-Bielich HTZCS_2018 2018 Relativistic parameterizations of neutron matter and implications for neutron stars Phys.Rev.C 98 (2018) 6, 065804 Eos
113 G. Grams, J. Margueron, R. Somasundaram and S. Reddy GMSR_2021 2022 Confronting a set of Skyrme and χEFTχEFT​ predictions for the crust of neutron stars: On the origin of uncertainties in model predictions Eur.Phys.J.A 58 (2022) 56 Eos
145 Domenico Logoteta , Albino Perego , Ignazio Bombaci LPB_2021 2021 Microscopic equation of state of hot nuclear matter for numerical relativity simulations Astron.Astrophys. 646, A55 Eos
146 Maria Piarulli , Luca Girlanda , Rocco Schiavilla , Alejandro Kievsky , Alessandro Lovato PGSKL_2016 2016 Local chiral potentials with Δ-intermediate states and the structure of light nuclei Phys.Rev.C 94, 054007 Eos
147 Domenico Logoteta , Ignazio Bombaci , Alejandro Kievsky LBK_2016 2016 Nuclear matter properties from local chiral interactions with Δ isobar intermediate states Phys.Rev.C 94, 064001 Eos
148 Albino Perego , Domenico Logoteta , David Radice , Sebastiano Bernuzzi , Rahul Kashyap PLRBK_2022 2022 Probing the Incompressibility of Nuclear Matter at Ultrahigh Density through the Prompt Collapse of Asymmetric Neutron Star Binaries Phys.Rev.Lett. 129, 032701 Eos
149 Aviral Prakash , David Radice , Domenico Logoteta , Albino Perego , Vsevolod Nedora PRLPN_2021 2021 Signatures of deconfined quark phases in binary neutron star mergers Phys. Rev. D 104, 083029 Eos
150 Sebastiano Bernuzzi , Matteo Breschi , Boris Daszuta , Andrea Endrizzi , Domenico Logoteta et al. BBDEL_2020 2020 Accretion-induced prompt black hole formation in asymmetric neutron star mergers, dynamical ejecta and kilonova signals Mon. Not. R. Astron. Soc. 497, 1488 Eos
151 Rahul Kashyap , Abhishek Das , David Radice , Surendra Padamata , Aviral Prakash et al. KDRPP_2022 2022 Numerical relativity simulations of prompt collapse mergers: Threshold mass and phenomenological constraints on neutron star properties after GW170817 Phys. Rev. D 105, 103022 Eos
143 Bikram Keshari Pradhan , Debarati Chatterjee , Radhika Gandhi , Jürgen Schaffner-Bielich PCGS_2022 2022 Role of vector self-interaction in Neutron Star properties Nucl.Phys.A 1030 (2023) 122578 Eos