QHC18 (Quark-Hadron-Crossover, ver. 2018)

EoS Submission Details

EoS name QHC18

category Unified EoS, from hadronic to quark matter

submitted by Toru Kojo

affiliation Central China Normal University

e-mail contact torujj@mail.ccnu.edu.cn

sheet creation date Feb.7, 2019

Abstract

This table corresponds to the zero temperature and β -equilibrium unified EoS by Baym et al. [1]. The EoS are divided into four distinct domains: the crust, nuclear liquid, hadron-quark crossover, and quark matter domains. For each domain we assign an equation of state as

Crust: **Togashi EoS** [2] $[10^{-9}n_0 \le n_B \le 0.26n_0]$

Nuclear liquid : **APR98 EoS** [3] $[0.26n_0 \le n_B \le 2n_0]$

Crossover : QHC18 [1] $[2n_0 \le n_B \le 5n_0]$ Quark matter : QHC18 [1] $[5n_0 \le n_B \le 10n_0]$

The quark matter EoS (including up-, down-, and strange-quarks) in the QHC18 was calculated using the NJL model within the mean field approximation. As variable parameters, we choose g_V and H which quantify the strength of the repulsive density-density interaction and the attractive paring-interaction between quarks, respectively. We chose $(g_V, H) = (0.80, 1.50)G_s$ which is compatible with the hadron physics. The QHC18 satisfies the empirical constraints from neutron stars as well as the causality and thermodynamic consistency.

References to the original work

- 1, G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song and T. Takatsuka,
 - "From hadrons to quarks in neutron stars: a review,"
 - Rept. Prog. Phys. 81 (2018) no.5, 056902, doi:10.1088/1361-6633/aaae14
- 2, H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki and M. Takano,
 - "Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces," Nucl. Phys. A 961, 78 (2017), doi:10.1016/j.nuclphysa.2017.02.010
- 3, A. Akmal, V. R. Pandharipande and D. G. Ravenhall,
 - "The Equation of state of nucleon matter and neutron star structure,"
 - Phys. Rev. C 58 (1998) 1804, doi:10.1103/PhysRevC.58.1804

Nuclear Matter Properties¹ (same as APR EoS [3])

	quantity	unit	
n_0	saturation density in symmetric matter	$\rm fm^{-3}$	0.16
E_0	binding energy per baryon at saturation	${ m MeV}$	16.0
K	incompressibility	${ m MeV}$	266
K'	skewness	${ m MeV}$	0
J	symmetry energy	${ m MeV}$	32.6
L	symmetry energy slope parameter	${ m MeV}$	57.6
K_{sym}	symmetry incompressibility	MeV	0

Neutron Star Properties

	quantity	unit	
M_{max}	maximum mass	M_{sun}	2.05
$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	
$R_{M_{max}}$	radius at maximum NS mass	km	10.41
$R_{1.4}$	radius at $1.4 M_{sun}$ NS mass	km	11.49

eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available.

table dimension	1
table type	1
total number of grid points	400

Range and density (#) of the grid parameters:

	quantity	unit	\min	max	#
T	Temperature	MeV	0.	0.	1
n_B	Baryon Nr density	${\rm fm}^{-3}$	8.686064E-011	1.704272	400
Y_q	Charge fraction		0.	0.	1

 $T,\,n_B,\,{\rm and}\,\,Y_q$ are stored in eos.t, eos.nb, and eos.yq, respectively.

¹0-values indicate, that the corresponding data is not provided.