QHC19 A-D (Quark-Hadron-Crossover, set A-D, 2019)

EoS Submission Details

EoS name QHC19 A-D

category Unified EoS, from hadronic to quark matter

submitted by Toru Kojo

affiliation Central China Normal University

e-mail contact torujj@mail.ccnu.edu.cn

sheet creation date Oct.13, 2020

Abstract

This table corresponds to the zero temperature and β -equilibrium unified EoS by Baym et al. [1]. The EoS are divided into four distinct domains: the crust, nuclear liquid, hadron-quark crossover, and quark matter domains. For each domain we assign an equation of state as

Crust – Nuclearliquid : **Togashi EoS** [2] $[10^{-9}n_0 \le n_B \le 2n_0]$

Crossover : **QHC19** [1] $[2n_0 \le n_B \le 5n_0]$ Quark matter : **QHC19** [1] $[5n_0 \le n_B \le 10n_0]$

The quark matter EoS (including up-, down-, and strange-quarks) in the QHC19 was calculated using the NJL model within the mean field approximation [2]. As variable parameters, we choose g_V and H which quantify the strength of the repulsive density-density interaction and the attractive paring-interaction between quarks, respectively. We consider four sets,

$$(g_V, H)/G = (0.60, 1.43) [A], (0.80, 1.49) [B], (1.00, 1.55) [C], (1.20, 1.61) [D].$$
 (1)

which are compatible with the hadron physics. The QHC19 satisfies the empirical constraints from neutron stars as well as the causality and thermodynamic consistency.

References to the original work

- G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, and H. Togashi, "New Neutron Star Equation of State with Quark-Hadron Crossover," Astrophys. J. 885 (2019), 42, doi:10.3847/1538-4357/ab441e
- 2, G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song and T. Takatsuka, "From hadrons to quarks in neutron stars: a review,"

 Rept. Prog. Phys. 81 (2018) no.5, 056902, doi:10.1088/1361-6633/aaae14
- H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki and M. Takano,
 "Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces,"
 Nucl. Phys. A 961, 78 (2017), doi:10.1016/j.nuclphysa.2017.02.010

Nuclear Matter Properties 1

	quantity	unit	
n_0	saturation density in symmetric matter	${\rm fm}^{-3}$	0.16
E_0	binding energy per baryon at saturation	${ m MeV}$	16.1
K	incompressibility	${ m MeV}$	245
K'	skewness	${ m MeV}$	0
J	symmetry energy	${ m MeV}$	29.1
L	symmetry energy slope parameter	${ m MeV}$	38.7
K_{sym}	symmetry incompressibility	${ m MeV}$	0

Neutron Star Properties

	quantity	unit	
$\overline{M_{max}}$	maximum mass	M_{sun}	1.93 [A], 2.07 [B], 2.18 [C], 2.28 [D]
$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	_
$R_{M_{max}}$	radius at maximum NS mass	km	10.2 [A], 10.6 [B], 10.8 [C], 10.9 [D]
$R_{1.4}$	radius at 1.4 M_{sun} NS mass	km	11.6 [A-D]

eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available.

table dimension	1
table type	1
total number of grid points	366 [A], 363 [B], 360 [C], 358 [D]

Range and density (#) of the grid parameters:

	quantity	unit	\min	max	#
T	Temperature	MeV	0.	0.	1
n_B	Baryon Nr density	${\rm fm}^{-3}$	7.58E-011	1.64	366 [A], 363 [B], 360 [C], 358 [D]
Y_q	Charge fraction		0.	0.	1

 $T,\,n_B,\,{\rm and}\,\,Y_q$ are stored in eos.t, eos.nb, and eos.yq, respectively.

 $^{^{1}0}$ -values indicate, that the corresponding data is not provided.