Hempel-Schaffner-Bielich/SFHo

EoS Submission Details

EoS name Hempel-Schaffner-Bielich/SFHo

category hadronic

submitted by Matthias Hempel affiliation Universität Basel

e-mail contact matthias.hempel(at)unibas.ch

sheet creation date October 20, 2020

Abstract

This is the SFHo EOS table [1] which is based on the statistical model with excluded volume and interactions of Hempel and Schaffner-Bielich (HS) [2] with RMF interactions SFHo [1]. Contributions of neutrons, anti-neutrons, protons, anti-protons, electrons, positrons, photons, and nuclei are included. For the masses of nuclei, FRDM [3] was used. The details of the underlying EOS model can be found in Ref. [2], where the TMA interactions were used. The manual from the web page http://phys-merger.physik.unibas.ch/~hempel/eos.html gives further information about the EOS table. On this web page, also routines areavailable which allow to determine the abundances of all nuclei for all conditions. Applications of HS EOS for various different RMF interactions in supernova simulations can be found in Refs. [2,4].

References to the original work

- 1. M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837 (2010) 210.
- 2. A.W. Steiner, M. Hempel, and T. Fischer, Astrophys.J. 774 (2013) 17.
- 3. P. Möller, J.R. Nix, and K.-L. Kratz, Atomic Data and Nuclear Data Tables 66 (1997) 131.

Further References

4. M. Hempel, T. Fischer, J. Schaffner-Bielich, and M. Liebendörfer, Astrophys. J.748(2012) 70.

Updated parameter values for the SFHo interaction

Please refer to Ref. [2] for the notations. Values as communicated by M. Hempel.

Quantity	Unit	
c_{σ}	fm	3.1791606374
c_{ω}	fm	2.2752188529
$c_{ ho}$	fm	2.4062374629
b		$7.3536466626 \times 10^{-3}$
c		$-3.8202821956 \times 10^{-3}$
ζ		$-1.6155896062 \times 10^{-3}$
ξ		$4.1286242877 \times 10^{-3}$
a_1	${ m fm^{-1}}$	$-1.9308602647 \times 10^{-1}$
a_2		$5.6150318121 \times 10^{-1}$
a_3	fm	$2.8617603774 \times 10^{-1}$
a_4	$\rm fm^2$	2.7717729776
a_5	${ m fm^3}$	1.2307286924
a_6	${ m fm^4}$	$6.1480060734 \times 10^{-1}$
b_1		5.5118461115
b_2	${ m fm^2}$	-1.8007283681
b_3	${ m fm^4}$	$4.2610479708 \times 10^{2}$
m_{σ}	${ m fm^{-1}}$	2.3689528914
m_ω	${\rm fm}^{-1}$	3.9655047020
$m_ ho$	fm^{-1}	3.8666788766

Nuclear Matter Properties¹

	Quantity	Unit	
$\overline{n_S}$	saturation density in symmetric matter	$\rm fm^{-3}$	0.1583
E_0	binding energy per baryon at saturation	MeV	16.19
K	incompressibility	MeV	245.4
K'	skewness	MeV	-467.8
J	symmetry energy	MeV	31.57
L	symmetry energy slope parameter	MeV	47.10
K_{sym}	symmetry incompressibility	MeV	-205.4

Neutron Star Properties¹

eos.thermo

eos.
thermo and the three grid defining files are CompOSE standard data files and by
 definition available. eos.
thermo does not necessarily provide all possible data.

¹0-values indicate, that the corresponding data is not provided.

	Quantity	Unit	
$\overline{M_{max}}$	maximum mass	M_{sun}	2.06
$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	0
$R_{M_{max}}$	radius at maximum NS mass	km	10.3
$R_{1.4}$	radius at 1.4 M_{sun} NS mass	km	11.9

 $\begin{array}{ll} \text{table dimension} & 3 \\ \text{table type} & 1 \\ \text{total number of grid points} & 1496880 \end{array}$

Range and density (#) of the grid parameters:

	Quantity	Unit	min	max	#
$\overline{\mathrm{T}}$	Temperature	MeV	0.1E+00	0.15848932E + 03	81
n_b	Baryon Nr Density	${\rm fm}^{-3}$	0.1E-11	0.19054607E + 01	308
Y_q	Charge Fraction		0.10000000E-01	0.60000000E+00	60

T, $\mathbf{n}_b,$ and \mathbf{Y}_q are stored in eos.t, eos.nb, and eos.yq, respectively.

Further Available Data Files

Files and quantities listed in the following are provided beyond CompOSE's core requirements as outlined in Sec.4.2. of the CompOSE manual.

eos.compo: available

index	particle
0	e^{-}
10	n
11	p
4002	$_4^2{ m He}$
3002	$_{3}^{2}\mathrm{He}$
3001	$^{1}_{3}\mathrm{H}$
2001	${}_{2}^{1}\mathrm{H}$
	- end of table -

The listed particle number fractions are net fractions, i.e., they are given by the difference between the correspoding particle and anti-particle fractions. Further particle sets are defined.

index	description
999	Average fraction, mass and proton number for all nuclei not listed above
	- end of table -

eos.micro: available

index	quantity	particle
10041	Dirac effective mass divided by particle mass m_i^D/m_i	n
11041	Dirac effective mass divided by particle mass m_i^D/m_i	p
10051	relativistic vector self-energy V_i	n
11051	relativistic vector self-energy V_i	p
	- end of table -	