BHF calculation with chiral forces with crust EoS

EoS Submission Details

BHF calculation with chiral forces with crust EoS
Hadronic
Anthea Fantina
GANIL, Caen, France
anthea.fantina@ganil.fr
May 31, 2023

Abstract

Microscopic equation of state (EoS) of dense β -stable nuclear matter at zero temperature (T=0) obtained using realistic two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) and including the $\Delta(1232)$ isobar intermediate state. This EoS has been derived using the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation with the continuous choice for the auxiliary single particle potential.

The present table is relative to the nuclear interaction model denoted as N3LO Δ + N2LO Δ 1 in Ref. [1]. It contains the contributions from electrons and muons in addition to β -stable nuclear matter. The above core EoS has been matched in a consistent way to a crust model from [2].

References to the original work

- 1. I. Bombaci and D. Logoteta, Astron. and Astrophys. 609. A128 (2018)
- 2. T. Carreau, F. Gulminelli, J. Margueron, Eur.Phys.J.A 55 (2019), 188.

Nuclear Matter Properties¹

	Quantity	Unit	
n_S	saturation density in symmetric matter	fm^{-3}	0.171
E_0	binding energy per baryon at saturation	MeV	15.23
K	incompressibility	MeV	190
K'	skewness	MeV	0
J	symmetry energy	MeV	35.39
L	symmetry energy slope parameter	MeV	76
K_{sym}	symmetry incompressibility	MeV	0

Neutron Star Properties¹

	Quantity	Unit	
M_{max}	maximum mass	M_{sun}	2.08
$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	0.961
$R_{M_{max}}$	radius at maximum NS mass	km	10.26
$R_{1.4}$	radius at $1.4 M_{sun} NS$ mass	km	12.27
$ ilde{\Lambda}$	tidal deformability GW170817 at $q = M_1/M_2 = 0.8$		

eos.thermo

eos.
thermo and the three grid defining files are CompOSE standard data files and by
 definition available.

table dimension1table type1total number of grid points1547

Range and density (#) of the grid parameters:

	Quantity	Unit	\min	\max	#	
Т	Temperature	MeV	0	0	1	
\mathbf{n}_b	Baryon Nr Density	${\rm fm}^{-3}$	1.E-11	1.2943	1547	
\mathbf{Y}_q	Charge Fraction		0.	0.	1	

T, $\mathbf{n}_b,$ and \mathbf{Y}_q are stored in eos.t, eos.nb, and eos.yq, respectively.

¹0-values indicate, that the corresponding data is not provided.