EoS Submission Details

EoS name	Brussels-Montreal BSk22
category	nuclear
submitted by	Anthea F. Fantina
affiliation	Grand Accélérateur National d'Ions Lourds (GANIL)
e-mail contact	anthea.fantina(at)ganil.fr
sheet creation date	April 23, 2023

Abstract

This table corresponds to the zero temperature unified equation of state (EoS) for cold non-accreting neutron stars in beta equilibrium based on the Brussels-Montreal energydensity functional BSk22 [1]. Details on the EoS model can be found in Ref. [2] and the routines to construct an analytical fit of the EoS are also available on the Ioffe website [3]. The tidal deformability associated to this EoS model was calculated in Ref. [4].

The outer crust was calculated using the Hartree-Fock-Bogoliubov atomic mass table HFB-22 available on the BRUSLIB data base [5], except when experimental values were available, for which we used the 2016 Atomic Mass Evaluation [6], supplemented by the measurements of copper isotopes from Ref. [7]. The inner crust was computed using the 4th-order Extended Thomas-Fermi (ETF) method with proton shell and pairing corrections added perturbatively via the Strutinsky integral (SI); the nucleon distributions were parametrized using damped Fermi profiles and the Coulomb energy was calculated within the Wigner-Seitz (WS) approximation. Although the EoS was originally calculated ignoring nuclear pastas, their presence in neutron-star crust was later discussed in Refs. [8,9] and was shown to be marginal in the Extended Thomas-Fermi plus Strutinski Integral framework [9]. The core was assumed to be made up by an admixture of neutrons and protons neutralised by electrons and possibly by muons. ${}^{1}S_{0}$ neutron and proton pairing gaps in neutron-star cores were calculated in Ref. [10].

References to the original work

- 1. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88 (2013) 024308.
- J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C. Ducoin, A. K. Dutta, and S. Goriely, MNRAS 481 (2018) 2994; MNRAS 486 (2019) 768.
- 3. http://www.ioffe.ru/astro/NSG/BSk/
- 4. L. Perot, N. Chamel, and A. Sourie, Phys. Rev. C 100 (2019) 035801.

- Y. Xu, S. Goriely, A. Jorissen, G. L. Chen, and M. Arnould, Astronomy & Astrophysics 549 (2013) A106.
- M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chinese Phys. C 41 (2017) 030003.
- 7. A. Welker, et al., Phys. Rev. Lett. 119 (2017) 192502.
- 8. J. M. Pearson, N. Chamel, and A. Y. Potekhin, Phys. Rev. C 101 (2020) 015802.
- 9. J. M. Pearson and N. Chamel, Phys. Rev. C 105 (2022) 015803.
- 10. V. Allard and N. Chamel, Universe 7 (2021) 470.

Nuclear Matter Properties¹

	Quantity	Unit	
n_S	saturation density in symmetric matter	${\rm fm}^{-3}$	0.1578
E_0	binding energy per baryon at saturation	MeV	16.088
K	incompressibility	MeV	245.9
K'	skewness	MeV	275.5
J	symmetry energy	MeV	32.0
L	symmetry energy slope parameter	MeV	68.5
K_{sym}	symmetry incompressibility	MeV	13.0
M_s^{\star}/M	isoscalar effective mass over nucleon mass	dimensionless	0.8
M_v^{\star}/M	isovector effective mass over nucleon mass	dimensionless	0.71

Neutron Star Properties¹

	Quantity	Unit	
M_{max}	maximum mass	M _{sun}	2.26
$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	1.151
$R_{M_{max}}$	radius at maximum NS mass	km	11.20
$R_{1.4}$	radius at $1.4 M_{sun} NS mass$	km	13.04
$ ilde{\Lambda}$	tidal deformability for GW170817 at a mass ratio of $q = 0.8$		724.0
n_{caus}	causality limit	${\rm fm}^{-3}$	1.095

The value of the Λ parameter has been determined for the following neutron-star masses: $M_1 = 1.54 \ M_{\odot}$ and $M_2 = 1.21 \ M_{\odot}$, yielding a chirp mass $\mathcal{M} = 1.188 \ M_{\odot}$ and a mass ratio q = 0.8.

eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available.

table dimension	1
table type	1
total number of grid points	489

 $^{^10\}mathchar`-values$ indicate, that the corresponding data is not provided.

Range and density (#) of the grid parameters:

	Quantity	Unit	min	\max	#	
Т	Temperature	MeV	0	0	1	
\mathbf{n}_b	Baryon Nr Density	${\rm fm}^{-3}$	4.6796E-10	1.4922	489	
\mathbf{Y}_q	Charge Fraction		0	0	1	

T, $\mathbf{n}_b,$ and \mathbf{Y}_q are stored in eos.t, eos.nb, and eos.yq, respectively.

Further Available Data Files

Files and quantities listed in the following are provided beyond CompOSE's core requirements as outlined in Sec.4.2. of the CompOSE manual.

 $\textbf{eos.compo}: available}$

index	particle
0	e ⁻
1	μ^-
10	n
11	р
	- end of table -

Description of phases

Phase index # 1 : inhomogeneous matter in the outer crust (ions and electrons) Phase index # 2 : inhomogeneous matter in the inner crust (ions, electrons, and free nucleons)

Phase index # 0: homogeneous matter in the core (neutrons, protons, electrons, muons)

eos.micro : available

index	quantity	particle
10040	Landau effective mass divided by particle mass m_i^L/m_i	n
11040	Landau effective mass divided by particle mass m_i^L/m_i	р
10050	single-particle potential U_i	n
11051	single-particle potential U_i	р
700060	pairing gap in the $nn(^1S_0)$ channel	n
702060	pairing gap in the $pp(^1S_0)$ channel	р
	- end of table -	

The quantities in eos.micro are only available for the core.

 $\mathbf{eos.mr}: \ available$