HJJSTV holographic model for massless quark matter and transport, intermediate variant

EoS Submission Details

EoS name HJJSTV holographic model for massless quark matter and

transport, intermediate variant

category Quark

submitted by Niko Jokela/Matti Järvinen affiliation University of Helsinki/APCTP

e-mail contact niko.jokela@helsinki.fi/matti.jarvinen@apctp.org

sheet creation date April 27, 2023

Abstract

These quark matter EoSs (soft, intermediate, and stiff variants) are derived using the gauge/gravity duality in the V-QCD model for three flavors of massless quarks. The soft, intermediate, and stiff variants¹ refer to the V-QCD models with potentials 5b, 7a, and 8b, respectively, constructed in [JJR_2019]. We provide the EoSs also at finite temperature and at a non-vanishing charge fraction following the approach of [CJLV_2019] (see also [DEJ_2022]). As additional quantities, we have included the bulk and shear viscosities and thermal and electrical conductivities of the quark matter component as computed in [HJJSTV_2020].

References to the original work

[JJR_2019] N. Jokela, M. Järvinen, and J. Remes, JHEP 03, 041 (2019) https://doi.org/10.1007/JHEP03(2019)041

[CJLV_2019] P. M. Chesler, N. Jokela, A. Loeb, and A. Vuorinen, Phys. Rev. D 100, 066027 (2019) https://doi.org/10.1103/PhysRevD.100.066027

[DEJ_2022] T. Demircik, C. Ecker, and M. Järvinen, Phys. Rev. X 12, 041012 (2022) https://doi.org/10.1103/PhysRevX.12.041012

[HJJSTV_2020] C. Hoyos, N. Jokela, M. Järvinen, J. G. Subils, J. Tarrío, and A. Vuorinen, Phys. Rev. Lett. 125, 241601 (2020) https://doi.org/10.1103/PhysRevLett.125.241601

¹These names refer to the stiffness of the EoS in the nuclear matter phase for which 1D tables are available in CompOSE, see the JJ(V-QCD(APR)) EoSs. In the quark matter phase there is no significant difference in the stiffness between the models.

eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available.

table dimension	3
table type	1
total number of grid points	1684881

Range and density (#) of the grid parameters:

	Quantity	Unit	\min	max	#	
$\overline{\mathrm{T}}$	Temperature	MeV	0.1	158.4893	81	
\mathbf{n}_b	Baryon Nr Density	${ m fm^{-3}}$	1e-12	39.8107	341	
Y_q	Charge Fraction		0	0.6	61	

T, \mathbf{n}_b , and \mathbf{Y}_q are stored in eos.t, eos.nb, and eos.yq, respectively.

Further Available Data Files

Files and quantities listed in the following are provided beyond CompOSE's core requirements as outlined in Sec.4.2. of the CompOSE manual.

eos.transport : available

index		Quantity	Unit
25	ζ	Bulk Viscocity	${ m MeV~fm^{-2}}$
26	η	Shear Viscocity	${ m MeV~fm^{-2}}$
27	κ	Thermal Conductivity	fm^{-2}
28	σ	Electrical Conductivity	$ m fm^{-1}$