EoS Submission Details

EoS name	RG-SLy4 EoS with neutrino opacity data
category	nuclear
submitted by	Micaela Oertel
affiliation	LUTH, CNRS, Observatoire de Paris
e-mail contact	micaela.oertel(at)obspm.fr
sheet creation date	March 4, 2020

Abstract

This EoS table corresponds to the extended NSE model proposed in Refs. [1,2] where excluded volume effects between nuclear clusters and unbound nucleons are implemented via energy shifts of clusters binding energies. For nuclei for which experimental masses are known, the mass tables of Audi el al. [4] are used. Then, up to the drip lines, evaluated masses of the 10-parameter model by Duflo and Zuker (DZ10) [5] are employed. Beyond drip lines, nuclear binding energies are described according to the Liquid Drop Model like parametrization of Ref. [6], corresponding to SLy4 [7]. This expression is modified in two respects. First, a phenomenological pairing term, $\Delta(A) = \pm 12/A$, where +(-) corresponds to even-even (odd-odd) nuclei, is added. Then, two correction terms are included such as to smoothly match, for each isotopic chain, the liquid-drop predictions with the limiting values of DZ10. The allowed mass range of clusters is $2 \le A \le 300$. Unbound nucleons are modelled within the standard density functional theory [8] model. The Skyrme SLy4 [7] effective interaction is used.

The grid in temperature, baryon number density and electron fraction has been modified with respect to the original table (RG-SLy4) to have regular spacing. Information on effective masses and interaction potentials have been added in eos.micro. The file nu_opacities_rpa.h5 contains tabulated charged-current opacities from RPA for ν_e and $\bar{\nu_e}$ [3].

References to the original work

- Unified treatment of sub-saturation stellar matter at zero and finite temperature, F. Gulminelli, Ad. R. Raduta, Phys. Rev. C 92 (2015) 055803.
- Nuclear Statistical Equilibrium Equation of State for Core Collapse, Ad. R. Raduta and F. Gulminelli, Nucl.Phys. A983, 252 (2019)
- 3. Improved neutrino-nucleon interactions in dense and hot matter for numerical simulations, M. Oertel, A. Pascal, M. Mancini, J. Novak, submitted.

Further References

- 4. The Ame2012 atomic mass evaluation, G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36 (2012) 1287; The Ame2012 atomic mass evaluation, M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36 (2012) 1603; http://amdc.impcas.ac.Cn/evaluation/data2012/data/nubase.mas12.
- Microscopic mass formulas, J. Duflo and A. P. Zuker, Phys. Rev. C 52 (1995) R23.
- Symmetry energy I: Semi-infinite matter, P. Danielewicz and J. Lee, Nucl. Phys. A 818 (2009) 36.
- A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities, E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635 (1998) 231.
- Many-body methods at finite temperature, D. Vautherin, Adv. Nucl. Phys. 22 (1996) 123.

Nuclear Matter Properties¹

	Quantity	Unit		
n_S	saturation density in symmetric matter	fm^{-3}	0.159	
E_0	binding energy per baryon at saturation	MeV	15.97	
K	incompressibility	MeV	230.0	
K'	skewness	MeV	-363.11	
J	symmetry energy	MeV	32.04	
L	symmetry energy slope parameter	MeV	46.00	
K_{sym}	symmetry incompressibility	MeV	-119.73	

Neutron Star Properties¹

	Quantity	Unit	
M_{max}	maximum mass	M_{sun}	2.075
$M_{DU,e}$	mass at DUrca threshold (1/9) w/o μ^-	M_{sun}	0
$R_{M_{max}}$	radius at maximum NS mass	km	10.09
$R_{1.4}$	radius at $1.4 M_{sun} NS$ mass	km	11.86
$ ilde{\Lambda}$	tidal deformability GW170817 at $q = M_1/M_2 = 0.8$		396

eos.thermo

eos.thermo and the three grid defining files are CompOSE standard data files and by definition available. eos.thermo does <u>not</u> necessarily provide all possible data.

table dimension	3
table type	1
total number of grid points	672000

Range and density (#) of the grid parameters:

	Quantity	Unit	\min	\max	#
Т	Temperature	MeV	0.1	50.00	80
\mathbf{n}_b	Baryon Nr Density	${\rm fm}^{-3}$	1.0E-12	1.50	140
\mathbf{Y}_q	Charge Fraction		0.01	0.60	60

T, $\mathbf{n}_b,$ and \mathbf{Y}_q are stored in eos.t, eos.nb, and eos.yq, respectively.

 $^{^10\}mathchar`-values$ indicate, that the corresponding data is not provided.

Further Available Data Files

Files and quantities listed in the following are provided beyond CompOSE's core requirements as outlined in Sec.4.2. of the CompOSE manual.

 $\textbf{eos.compo}: available}$

 $\begin{array}{ll} \mathrm{index} & \mathrm{particle} \\ 10 & \mathrm{n} \\ 11 & \mathrm{p} \\ 2001 & {}^{2}\mathrm{H} \\ 3001 & {}^{3}\mathrm{H} \\ 3002 & {}^{3}\mathrm{He} \\ 4002 & \alpha \mathrm{-particle} \\ & - \mathrm{end} \mathrm{ of \ table} \mathrm{-} \end{array}$

further particle sets are defined as quadruples representing an average heavy nucleus $(A \ge 20)$ and average light nuclei $(2 \le A < 20)$.

index | description

- 1Average mass number, proton number and fraction for light nuclei $(2 \le A < 20)$ 2Average mass number, proton number and fraction for heavy nuclei $(A \ge 20)$
 - end of table -

eos.micro : available

index	quantity	particle
10040	Landau effective mass divided by particle mass m_i^L/m_i	n
11040	Landau effective mass divided by particle mass m_i^L/m_i	р
10050	non-relativistic single-particle potential U_i [MeV]	n
11050	non-relativistic single-particle potential U_i [MeV]	р
	- end of table -	